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Abstract

We establish learning rates up to the order of n−1 for support vector machines with hinge
loss (L1-SVMs) and nontrivial distributions. For the stochastic analysis of these algorithms we
use recently developed concepts such as Tsybakov’s noise assumption and local Rademacher
averages. Furthermore we introduce a new geometric noise condition for distributions that is
used to bound the approximation error of Gaussian kernels in terms of their widths.

1 Introduction

In recent years support vector machines (SVMs) have been the subject of many theoretical con-
siderations. Despite this effort, their learning performance on restricted classes of distributions is
still widely unknown. In particular, it is unknown under which circumstances SVMs can guarantee
fast rates with respect to the sample size n for their learning performance. The aim of this work
is to use recently developed concepts like Tsybakov’s noise assumption and local Rademacher av-
erages to establish learning rates up to the order of n−1 for nontrivial distributions. In addition
to these concepts which are used to deal with the stochastic part of the analysis we also introduce
a geometric assumption for distributions that allows us to estimate the approximation properties
of Gaussian kernels. Unlike many other concepts introduced for bounding the approximation error
our geometric assumption is not in terms of smoothness but describes the concentration of the
marginal distribution near the decision boundary.

Let us formally introduce the statistical classification problem. To this end assume for technical
reasons that X ⊂ Rd is a compact subset. We write Y := {−1, 1}. Given a finite training set
T =

(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n the classification task is to predict the label y of a new

sample (x, y). In the standard batch model it is assumed that the samples (xi, yi) are i.i.d. according
to an unknown (Borel) probability measure P on X × Y . Furthermore, the new sample (x, y) is
drawn from P independently of T . Given a classifier C that assigns to every training set T a
measurable function fT : X → R the prediction of C for y is sign fT (x), where we choose a fixed
definition of sign(0) ∈ {−1, 1}. In order to “learn” from the samples of T the decision function
fT : X → R should guarantee a small probability for the misclassification of the example (x, y).
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Here, misclassification means sign fT (x) 6= y. To make this precise the risk of a measurable function
f : X → R is defined by

RP (f) := P
(
{(x, y) : sign f(x) 6= y}

)
.

The smallest achievable risk RP := inf
{
RP (f) | f :X → R measurable

}
is called the Bayes risk of

P . A function attaining this risk is called a Bayes decision function. Obviously, a good classifier
should produce decision functions whose risks are close to the Bayes risk with high probability.
This leads to the definition: a classifier is called universally consistent if

RP (fT ) → RP (1)

in probability for all Borel probability measures P on X × Y . Since RP (fT ) is bounded between
RP and 1 the convergence in (1) holds if and only if

ET∼P nRP (fT )−RP → 0 . (2)

The next naturally arising question is whether there are classifiers which guarantee a specific con-
vergence rate in (2) for all distributions. Unfortunately, this is impossible by a result of Devroye (see
[14, Thm. 7.2]). However, if one restricts considerations to certain smaller classes of distributions
such rates exist for various classifiers, e.g.:
•Assuming that the conditional probability η(x) := P (y = 1|x) satisfies certain smoothness as-
sumptions Yang showed in [40] that some plug-in rules achieve rates of the form n−α for some
0 < α < 1/2 depending on the assumed smoothness. He also showed that these rates are optimal
in the sense that no classifier can obtain faster rates under the proposed smoothness assumptions.

•Recently, for SVMs with hinge loss (L1-SVMs) Wu and Zhou [39] established rates under the
assumption that η is contained in a Sobolev space. In particular, they obtained rates of the form
(log n)−p for some p > 0 if the L1-SVM uses a Gaussian kernel with fixed width.

• It is well known (see [14, Sec. 18.1]) that using structural risk minimization over a sequence
of hypothesis classes with finite VC-dimension every distribution which has a Bayes decision
function in one of the hypothesis classes can be learned with rate n−1/2.

•Let P be a distribution with no noise regarding the labeling, i.e. P satisfies RP = 0, and F be a
class with finite VC-dimension. If F contains a Bayes decision function then the learning rate of
the ERM classifier over F is, up to a logarithmic factor, of the form n−1 (see e.g. [14, Sec. 12.7]).

Considering the ERM classifier and hypothesis classes F containing a Bayes decision function there
is a large gap in the rates for noise-free and noisy distributions. Remarkably, Tsybakov recently
closed this gap in [37] by showing that certain ERM-type classifiers learn with rates of the form

n
− q+1

q+pq+2 , where 0 ≤ q ≤ ∞ is a parameter describing how well the noise in the labels, i.e. the
function

x 7→ min
{
1− η(x), η(x)

}
=

1
2
−
∣∣∣η(x)− 1

2

∣∣∣ , (3)

is distributed around the critical level 1/2 (see Definition 2.2 in the following section) and 0 < p < 1
measures the complexity of the function class F the ERM method minimizes over. Furthermore,
Tsybakov showed that for specific types of distributions, the above rates are actually optimal in
a min-max sense. Unfortunately, the ERM-classifier he considered requires substantial knowledge
on how to approximate the desired Bayes decision functions by F . Moreover, ERM classifiers are
based on combinatorial optimization problems and hence they are usually hard to implement and
in general there exist no efficient algorithms.

On the one hand SVMs do not share the implementation issues of ERM since they are based on
a convex optimization (see e.g. [12, 28] for algorithmic aspects). On the other hand, however, their
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known learning rates are rather unsatisfactory since either the assumptions on the distributions
are too restrictive as in [30] or the established learning rates are too slow as in [39]. Our aim is
to give SVMs a better theoretical foundation by establishing fast learning rates for a wide class
of distributions. To this end we propose a geometric noise assumption (see Definition 2.3) which
describes the concentration of the measure |2η − 1|dPX—where PX is the marginal distribution of
P with respect to X—near the decision boundary by a parameter α ∈ (0,∞]. This assumption
is then used to determine the approximation properties of Gaussian kernels which are used in the
SVMs we consider. Provided that the tuning parameters are optimally chosen our main result then
shows that the resulting learning rates for these classifiers are essentially of the form

n−
α

2α+1

if α ≤ q+2
2q , and

n
− 2α(q+1)

2α(q+2)+3q+4

if α > q+2
2q . In particular, we obtain learning rates faster than n−1/2 whenever α > 3q+4

2q .
The rest of this work is organized as follows: In Section 2 introduce all important concepts of

this work and then present our main results. In Section 3 we recall some basic theory on reproducing
kernel Hilbert spaces and prove a new covering number bound for Gaussian kernels that describes a
trade-off between the kernel widths and the considered radii of the covering balls. We then show in
Section 4 all results that are related to our proposed geometric noise assumption. The last sections
of the work contain the actual proof of our rates: In Section 5 we establish a general bound for
ERM-type classifiers involving local Rademacher averages which is used to bound the estimation
error in our analysis of SVMs. In order to apply this result we need “variance bounds” for L1-SVMs
which are established in Section 6. Interestingly, it turns out that sharp versions of these bounds
depend on both Tsybakov’s noise assumption and the approximation properties of the used kernel.
Finally, we prove our learning rates in Section 7.

2 Definitions and Main Results

In this section we first recall some basic notions related to support vector machines which are
needed throughout this text. In Subsection 2.2, we then present a covering number bound for
Gaussian RBF kernels which will play an important role in our analysis of the estimation error of
L1-SVMs. In Subsection 2.3 we recall Tsybakov’s noise assumption which will allow us to establish
learning rates faster than n−1/2. Then, in Subsection 2.4, we introduce a new assumption which
is used to estimate the approximation error for L1-SVMs with Gaussian RBF kernels. Finally, we
present and discuss our learning rates in Subsection 2.5.

2.1 RKHSs, SVMs and basic definitions

For two functions f and g we use the notation f(λ) � g(λ) to mean that there exists a constant
C > 0 such that f(λ) ≤ Cg(λ) over some specified range of values of λ. We also use the notation �
with similar meaning and the notation ∼ when both � and � hold. In particular we use the same
notation for sequences.

Recall (see e.g. [1, 6]) that every positive definite kernel k : X ×X → R over a non-empty set
X has a unique reproducing kernel Hilbert space H (RKHS) whose unit ball we denote by BH .
Although we sometimes use generic kernels and RKHSs we are mainly interested in Gaussian RBF
kernels which are the most widely used kernels in practice. Recall that these kernels are of the form

kσ(x, x′) = exp(−σ2‖x− x′‖2
2) , x, x′ ∈ X,

3



where X ⊂ Rd is a (compact) subset and σ > 0 is a free parameter whose inverse 1/σ is called the
width of kσ. We usually denote the corresponding RKHSs which are thoroughly described in [34]
by Hσ(X) or simply Hσ.

Let us now recall the definition of SVMs. To this end let P be a distribution on X × Y and
l : Y × R → [0,∞) be the hinge loss function, i.e.

l(y, t) := max{0, 1− yt}

for all y ∈ Y and t ∈ R. Furthermore, we define the l-risk of a measurable function f : X → R by

Rl,P (f) := E(x,y)∼P l(y, f(x)) .

Now let H be a RKHS over X consisting of measurable functions. For λ > 0 we denote a solution
of

arg min
f∈H
b∈R

(
λ‖f‖2

H +Rl,P (f + b)
)

(4)

by (f̃P,λ, b̃P,λ). Recall that f̃P,λ is uniquely determined (see e.g. [32]) while in some situations this is
not true for the offset b̃P,λ. In general we thus assume that b̃P,λ is an arbitrary solution. However,
for the (trivial) distributions that satisfy P ({y∗}|x) = 1 PX -a.s. for some y∗ ∈ Y we explicitly set
b̃P,λ := y∗ in order to control the size of the offset. Furthermore, if P is an empirical distribution
with respect to a training set T = ((x1, y1), . . . , (xn, yn)) we write Rl,T (f) and (f̃T,λ, b̃T,λ), i.e.

(f̃T,λ, b̃T,λ) ∈ arg min
f∈H
b∈R

(
λ‖f‖2

H +
1
n

n∑
i=1

max
{
0, 1− yi(f(xi) + b)

})
.

Note that in this case the above condition under which we set b̃T,λ := y∗ means that all labels yi

of T are equal to y∗. An algorithm that constructs (f̃T,λ, b̃T,λ) for every training set T is called
L1-SVM with offset. Furthermore, for λ > 0 we denote the unique solution of

arg min
f∈H

(
λ‖f‖2

H +Rl,P (f)
)

(5)

by fP,λ and for empirical distributions based on a training set T we again write fT,λ. A corre-
sponding algorithm is called L1-SVM without offset. Recall that under some assumptions on the
used RKHS and the choice of the regularization parameter λ it can be shown that both L1-SVM
variants are universally consistent (see [31, 41, 33]), however no satisfying result on convergence
rates has been established, yet.

We also emphasize that in many theoretical papers only L1-SVMs without offset are considered.
The reason for this is that the offset often causes serious technical problems and in some cases such
as stability analysis the results are even false for L1-SVMs with offset (for an analysis on partially
stable learning algorithms including L1-SVMs with offset which resolves many of these problems
we refer to [16]). However, in practice usually L1-SVMs with offset are used and therefore we feel
that these algorithms should be considered in theory, too. As we will see, our techniques can be
applied for both variants. The resulting rates coincide.

2.2 Covering numbers for Gaussian RKHSs

In order to bound the estimation error of L1-SVMs we need a complexity measure for the used
RKHSs which is introduced in this section. To this end let us first recall some notations: For a

4



subset A ⊂ E of a Banach space E the covering numbers are defined by

N (A, ε,E) := min
{

n ≥ 1 : ∃x1, . . . , xn ∈ E with A ⊂
n⋃

i=1

(xi + εBE)
}

ε > 0 ,

where BE denotes the closed unit ball of E. Moreover, for a bounded linear operator S : E → F
between two Banach spaces E and F , the covering numbers are N (S, ε) := N (SBE , ε, F ).

Furthermore, given a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n we denote the space
of all equivalence classes of functions f : X × Y → R with norm

‖f‖L2(T ) :=

(
1
n

n∑
i=1

∣∣f(xi, yi)
∣∣2) 1

2

(6)

by L2(T ). In other words, L2(T ) is a L2-space with respect to the empirical measure of T . Note, that
for a function f : X ×Y → R a canonical representant in L2(T ) is its restriction f|T . Furthermore,
we write L2(TX) for the space of all (equivalence classes of) square integrable functions with respect
to the empirical measure of x1, . . . , xn.

The proof of our learning rates uses the behaviour of logN (BHσ(X), ε, L2(TX)) in ε and σ in
order to bound the estimation error. Unfortunately, all known results on covering numbers for
Gaussian RBF kernels emphasize the role of ε and hence we will establish in Section 3 the following
result, of its own interest, which describes a trade-off between the influence of ε and σ.

Theorem 2.1 Let σ ≥ 1, X ⊂ Rd be a compact subset with non-empty interior, and Hσ(X) be the
RKHS of the Gaussian RBF kernel kσ on X. Then for all 0 < p ≤ 2 and all δ > 0, there exists a
constant cp,δ,d > 0 independent of σ such that for all ε > 0 we have

sup
T∈(X×Y )n

logN
(
BHσ(X), ε, L2(TX)

)
≤ cp,δ,d σ(1− p

2
)(1+δ)dε−p.

2.3 Tsybakov’s noise assumption

Without making assumption on the noise (3) it is impossible to obtain rates faster n−1/2. In this
section we hence recall Tsybakov’s noise assumption which was used in [37] to establish rates up
to the order of n−1 for certain ERM-type classifiers. It turns out in this work that this assumption
also allows such fast rates for L1-SVMs.

In order to motivate Tsybakov’s assumption let us first observe that by Equation (3) the function
|2η−1| can be used to describe the noise in the labels of a distribution P . Indeed, in regions where
this function is close to 1 there is only a small amount of noise, whereas function values close
to 0 only occur in regions with a high noise. The following modified version of Tsybakov’s noise
condition describes the size of the latter regions in terms of Lorentz spaces Lq,∞ (see e.g. [5] for
these spaces).

Definition 2.2 Let 0 ≤ q ≤ ∞ and P be a probability measure on X × Y . We say that P has
Tsybakov noise exponent q if (2η − 1)−1 ∈ Lq,∞(PX), i.e. there exists a constant C > 0 such that

PX

(
{x ∈ X : |2η(x)− 1| ≤ t}

)
≤ C · tq (7)

for all sufficiently small t > 0.
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It is easy to see that a distribution that has Tsybakov noise exponent q also has Tsybakov noise
exponent q′ for all q′ < q. Furthermore, all distributions obviously have at least noise exponent 0. In
the other extreme case q = ∞ the conditional probability η is bounded away from 1

2 . In particular
this means that noise-free distributions have exponent q = ∞. Furthermore, for q < ∞ the above
condition is satisfied if and only if (7) holds for all t > 0 and a possibly different constant C.
Finally note, that Tsybakov’s original noise condition assumed PX(f 6= fP ) ≤ c(RP (f) −RP )

q
1+q

for all f : X → Y which is satisfied if e.g. (7) holds (see [37, Prop. 1]). As already mentioned
in the introduction this condition and hence Tsybakov’s noise exponent enables us to obtain fast
classification rates for certain ERM algorithms (see [19, 37]). Furthermore, it can be used to
improve inequalities between the excess classification risk and other excess risks (see [4]).

2.4 A new geometric assumption for distributions

In this section we introduce a condition for distributions that will us allow to estimate the approx-
imation error for Gaussian RBF kernels. To this end let l be the hinge loss function and P be a
distribution on X. Let

Rl,P := inf
{
Rl,P (f) | f : X → R measurable

}
denote the smallest possible l-risk of P . Since functions achieving the minimal l-risk occur in many
situations we denote them by fl,P if no confusion regarding the non-uniqueness of this symbol
can be expected. Furthermore, recall that fl,P has a shape similar to the Bayes decision function
sign fP (see e.g. [32]). Now, given a RKHS H over X we define the approximation error function
with respect to H and P by

a(λ) := inf
f∈H

(
λ‖f‖2

H +Rl,P (f)−Rl,P

)
, λ ≥ 0 . (8)

Note that the obvious analogue of the approximation error function with offset is not greater than
the above approximation error function without offset and hence we restrict our attention to the
latter for simplicity.

For λ > 0, the solution fP,λ of (5) obviously satisfies a(λ) = λ‖fP,λ‖2
H +Rl,P (fP,λ)−Rl,P and

hence a(λ) describes how well λ‖fP,λ‖2
H +Rl,P (fP,λ) approximates Rl,P . Recall that it was shown

in [33] that if X is a compact metric space and H is dense in the space of continuous functions
C(X) then for all P we have a(λ) → 0 if λ → 0. However, in non-trivial situations no rate of
convergence which uniformly holds for all distributions P is possible. Since Hσ(X) is always dense
in C(X) for compact X ⊂ Rd these statements are in particular true for the approximation error
functions aσ(.) of Gaussian RBF kernels with fixed width 1/σ. However, we are not aware of any
weak condition on η or P that ensures aσ(λ) � λβ for λ → 0 and some β > 0, and the results of
[29] indicate that such behaviour of aσ(.) may actually require very restrictive conditions.

In the following we will therefore present a condition on distributions P that allows us to
estimate aσ(λ) by λ and σ. In particular it will turn out that aσ(λ) → 0 with a polynomial
rate in λ if we relate σ to λ in a certain manner. In order to introduce this assumption on P
we define the classes of P by X−1 := {x ∈ X : η(x) < 1

2}, X1 := {x ∈ X : η(x) > 1
2}, and

X0 := {x ∈ X : η(x) = 1
2} for some choice of η. Note, that a Tsybakov noise exponent q > 0

implies PX(X0) = 0. Now we define a distance function x 7→ τx by

τx :=


d(x, X0 ∪X1), if x ∈ X−1,

d(x,X0 ∪X−1), if x ∈ X1,

0, otherwise ,

(9)
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where d(x,A) denotes the distance of x to a set A with respect to the Euclidean norm. Roughly
speaking τx measures the distance of x to the “decision boundary”. With the help of this function
we can now define the following geometric condition for distributions.

Definition 2.3 Let X ⊂ Rd be compact and P be a probability measure on X × Y . We say that
P has geometric noise exponent α > 0 if there exists a constant C > 0 such that∫

X

|2η(x)− 1| exp
(
−τ2

x

t

)
PX(dx) ≤ Ct

αd
2 (10)

holds for all t > 0. We say that P has geometric noise exponent α = ∞ if it has geometric noise
exponent α′ for all α′ > 0.

Note, that in the above definition we make neither any kind of smoothness assumption nor do
we assume a condition on PX in terms of absolute continuity with respect to the Lebesgue measure.
Instead, the integral condition (10) describes the concentration of the measure |2η − 1|dPX near
the decision boundary. The less the measure is concentrated in this region the larger the geometric
noise exponent can be chosen. The following examples illustrate this.

Example 2.4 Since exp(−t) ≤ Cαt−α holds for all t > 0 and a constant Cα > 0 only depending on α > 0
we easily see that (10) is satisfied whenever(

x 7→ τ−1
x

)
∈ Lαd

(
|2η − 1|dPX

)
. (11)

Now, let us suppose X0 = ∅ for a moment. In this case τx measures the distance to the class x does not
belong to. In particular, we have

(
x 7→ τ−1

x

)
∈ L∞

(
|2η − 1|dPX

)
if and only if the two classes X−1 and X1

have strictly positive distance. If (11) holds for some 0 < α < ∞ then the two classes may “touch”, i.e. the
decision boundary ∂X−1 ∩ ∂X1 is nonempty. Using this interpretation we easily can construct distributions
which have geometric noise exponent ∞ and touching classes. In general for these distributions there is no
Bayes classifier in Hσ(X) for any σ > 0. Note, that from (11) it is obvious that the parameter α in (11)
describes the concentration of the measure |2η − 1|dPX near the decision boundary. For the distributions
described above |2η − 1|dPX must have a very low concentration near the decision boundary.

We now describe a regularity condition on η near the decision boundary that can be used to
guarantee a geometric noise exponent.

Definition 2.5 Let X ⊂ Rd, P be a distribution on X × Y , and γ > 0. We say that P has an
envelope of order γ if there is a constant cγ > 0 such that for PX -almost all x ∈ X the regular
conditional probability η(x) := P (y = 1|x) satisfies

|2η(x)− 1| ≤ cγτγ
x . (12)

Obviously, if P has an envelope of order γ then the graph of x 7→ 2η(x)− 1 lies in a multiple of
the envelope defined by τγ

x at the top −τγ
x at the bottom and hence η can be very irregular away

from the decision boundary but cannot be discontinuous when crossing it. The rate of convergence
of η(x) → 1/2 for τx → 0 is described by γ.

Interestingly, for distributions having both an envelope of order γ and and a Tsybakov noise
exponent q we can bound the geometric noise exponent as the following theorem, which is proved
in Section 4, shows.

Theorem 2.6 Let X ⊂ Rd be compact and P be a distribution on X × Y that has an envelope of
order γ > 0 and a Tsybakov noise exponent q ≥ 0. Then P has geometric noise exponent q+1

d γ if
q ≥ 1, and geometric noise exponent α for all α < q+1

d γ otherwise.
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Now the main result of this subsection which is proved in Section 4 shows that for distributions
having a nontrivial geometric noise exponent we can bound the approximation error function for
Gaussian RBF kernels.

Theorem 2.7 Let σ > 0, X be the closed unit ball of the Euclidean space Rd, and aσ(.) be the
approximation error function with respect to Hσ(X). Furthermore, let P be a distribution on X×Y
that has geometric noise exponent 0 < α < ∞ with constant C in (10). Then there is a constant
cd > 0 depending only on the dimension d such that for all λ > 0 we have

aσ(λ) ≤ cd

(
σdλ + C(4d)

αd
2 σ−αd

)
. (13)

In order to let the right side of (13) converge to zero it is necessary to assume both λ → 0
and σ → ∞. An easy consideration shows that the fastest convergence rate is achieved if σ(λ) :=

λ
− 1

(α+1)d . In this case we have aσ(λ)(λ) � λ
α

α+1 . In particular we can obtain rates up to linear
order in λ for sufficiently benign distributions. The price for this good approximation property is,
however, an increasing complexity of the hypothesis class BHσ(λ)

as we have seen in Theorem 2.1.

2.5 Learning rates for L1-SVMs using Gaussian RBF kernels

With the help of the geometric noise assumption we can now formulate our main result for L1-SVMs
using Gaussian RBF kernels.

Theorem 2.8 Let X be the closed unit ball of Rd, and P be a distribution on X×Y with Tsybakov
noise exponent q ∈ [0,∞] and geometric noise exponent α ∈ (0,∞). We define

λn :=

n−
α+1
2α+1 if α ≤ q+2

2q

n
− 2(α+1)(q+1)

2α(q+2)+3q+4 otherwise ,

and σn := λ
− 1

(α+1)d
n in both cases. Then for all ε > 0 there exists a C > 0 such that for all x ≥ 1

and n ≥ 1 the L1-SVM without offset using the Gaussian RBF kernel kσn satisfies

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cx2n−

α
2α+1

+ε
)
≥ 1− e−x

if α ≤ (q + 2)/2q. Here Pr∗ denotes the outer probability measure of Pn in order to avoid measur-
ability considerations. Analogously, in the case α > q+2

2q we have

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cx2n

− 2α(q+1)
2α(q+2)+3q+4

+ε
)
≥ 1− e−x .

If α = ∞ the latter concentration inequality holds if σn = σ is a constant with σ > 2
√

d. Further-
more, all results hold for the L1-SVM with offset if q > 0.

Remark 2.9 The rates in the above theorem are faster than the “parametric” rate n−1/2 if and only if
α > 3q+4

2q . In particular, for q = ∞ this condition becomes α > 3
2 and in a “typical intermediate” case q = 1

(cf. [37]) it becomes α > 7
2 .

Remark 2.10 It is important to note that our techniques can also be used to establish rates for other
definitions of the sequences (λn) and (σn). In fact, Theorem 2.7 guarantees aσn

(λn) → 0 (which is necessary
for our techniques to produce any rate) if σn →∞ and σd

nλn → 0. In particular, if λn := n−ι and σn := nκ

for some ι, κ > 0 with κd < ι these conditions are satisfied and a conceptually easy but technically involved
modification of our proof can produce rates for certain ranges of ι (and thus κ). In order to keep the
presentation as short as possible we omitted the details and focused on the best possible rates.
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Remark 2.11 Unfortunately, the choice of λn and σn that yield the optimal rates within our techniques,
require to know the values of α and q which are typically not available. We have not investigated how to
adaptively choose λn and σn yet, but this important question will be attacked in future research.

Remark 2.12 Another interesting but open question is whether the obtained rates are optimal for the class
of considered distributions. In order to approach this question let us consider the case α = ∞, which roughly
speaking describes the case of almost no approximation error. In this case our rates are essentially of the
form n

q+1
q+2 which coincide with the rates Tsybakov (see [37]) achieved for certain ERM classifiers based on

hypothesis classes of small complexity. The latter rates in turn cannot be improved in a min-max sense for
certain classes of distributions as it was also shown in [37]. This discussion indicates that the techniques
used for the stochastic part of our analysis may be strong enough to produce optimal results. However, if we
consider the case α < ∞ then the approximation error function described in Theorem 2.7 and its influence
on the estimation error (see our proofs, in particular Section 5 and Section 7) have a significant impact on
the obtained rates. Since the sharpness of Theorem 2.7 is unclear to us we make no conjecture regarding the
optimality of our rates in the general case.

Acknowledgment. We thank V. Koltchinskii and O. Bousquet for suggesting the local Rade-
macher averages as a way to obtain good performance bounds for SVMs and D. Hush for suggesting
that “we are now in a position to obtain rates to Bayes”.

3 Proof of Theorem 2.1

The main goal of this section is to prove Theorem 2.1 in Subsection 3.2. To this end we provide
some RKHS theory which is used throughout this work in Subsection 3.1.

3.1 Some basic RKHS theory

For the proofs of this section we have to recall some basic facts from the theory of RKHSs. To this
end let X ⊂ Rd be a compact subset and k : X×X → R be a continuous and positive semi-definite
kernel with RKHS H. Then H consists of continuous functions on X and for f ∈ H we have

‖f‖∞ ≤ K‖f‖H

where
K := sup

x∈X

√
k(x, x). (14)

Consequently if we denote the embedding of the RKHS H into the space of continuous functions
C(X) by

JH : H → C(X) (15)

we have ‖JH‖ ≤ K. Furthermore, let us recall the representation of H based on Mercer’s theorem
(see [13]). To this end let KX : L2(X) → L2(X) be the integral operator that is defined by

KXf(x) :=
∫

X
k(x, x′)f(x′)dx′ , f ∈ L2(X), x ∈ X , (16)

where L2(X) denotes the L2-space on X with respect to the Lebesgue measure. Then it was shown

in [13] that the unique square root K
1
2
X of KX is an isometric isomorphism between L2(X) and H,

and hence we have

H = K
1
2
XL2(X) and ‖K

1
2
Xf‖H = ‖f‖L2(X), f ∈ L2(X) .

9



3.2 Proof of Theorem 2.1

In order to prove Theorem 2.1 we need the following result which bounds the covering numbers of
Hσ(X) with respect to C(X).

Theorem 3.1 Let σ ≥ 1, 0 < p < 2 and X ⊂ Rd be a compact subset with non-empty interior.
Then there is a constant cp,d > 0 independent of σ such that for all ε > 0 we have

logN
(
BHσ(X), ε, C(X)

)
≤ cp,dσ

(1− p
4
)dε−p.

Proof: Let Bd be the closed unit ball of the Euclidean space Rd and
◦

Bd be its interior. Then
there exists an r ≥ 1 such that X ⊂ rBd. Now, it was recently shown in [34] that both restrictions
Hσ(rBd) → Hσ(X) and Hσ(rBd) → Hσ(

◦
Bd) are isometric isomorphisms. Consequently, in the

following we assume without loss of generality that X = Bd or X =
◦

Bd and do not concern
ourselves with the distinction of both cases.

Now let us write Hσ := Hσ(X) and Jσ := JHσ : Hσ → C(X) in order to simplify notations.
Furthermore, let Kσ : L2(X) → L2(X) be the integral operator of kσ defined as in (16), and ‖ · ‖
denote the norm in L2(X). According to [13, Thm. 3, p. 27], for any f ∈ Hσ, we obtain

inf
‖K−1

σ h‖≤R
‖f − h‖ ≤ 1

R

∥∥∥K− 1
2

σ f
∥∥∥2

=
1
R
‖f‖2

Hσ
,

where we use the convention ‖K−1
σ h‖ = ∞ if h 6∈ KσL2(X). Suppose now that H ⊂ L2(X)

is a dense Hilbert space with ‖h‖ ≤ ‖h‖H, and that we have Kσ : L2(X) → H ⊂ L2(X) with
‖Kσ : L2(X) → H‖ ≤ cσ,H < ∞ for some constant cσ,H > 0. It follows that

inf
‖h‖H≤cσ,HR

‖f − h‖ ≤ inf
‖K−1

σ h‖≤R
‖f − h‖ ≤ 1

R
‖f‖2

Hσ

and hence
inf

‖h‖H≤R
‖f − h‖ ≤

cσ,H
R

‖f‖2
Hσ

.

By [29, Thm. 3.1] it follows that f is in the real interpolation space (L2(X),H) 1
2
,∞ (see [7] for the

definition of interpolation spaces) and that its norm in this space satisfies

‖f‖ 1
2
,∞ ≤ 2

√
cσ,H‖f‖Hσ .

Therefore we obtain a continuous embedding

Υ1 : Hσ → (L2(X),H) 1
2
,∞

with ‖Υ1‖ ≤ 2√cσ,H. If in addition a subset inclusion (L2(X),H) 1
2
,∞ ⊂ C(X) exists which defines

a continuous embedding
Υ2 : (L2(X),H) 1

2
,∞ → C(X)

we have a factorization Jσ = Υ2Υ1 and can conclude

logN
(
BHσ(X), ε, C(X)

)
= logN (Jσ, ε) ≤ logN

(
Υ2,

ε

2√cσ,H

)
. (17)
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Consequently to bound logN (Jσ, ε) we need to select an H, compute cσ,H, and bound logN (Υ2, ε).

To that end let H := Wm(
◦
X) be the Sobolev space with norm

‖f‖2
m =

∑
|α|≤m

‖Dαf‖2 ,

where |α| :=
∑d

i=1 αi, Dα :=
∏d

i=1 ∂αi
i , and ∂αi

i denotes the αi-th partial derivative in the i-th
coordinate of Rd. By the Cauchy-Schwartz inequality we have

‖DαKσf‖2 =
∫
◦
X

∣∣∣∫ ◦
X

Dα
xkσ(x, x́)f(x́)dx́

∣∣∣2dx ≤
∫

X

(∫
X

∣∣Dα
xkσ(x, x́)

∣∣2dx́

∫
◦
X

f2(x́)dx́
)
dx

≤ ‖f‖2

∫
X

∫
X

∣∣Dα
xkσ(x, x́)

∣∣2dx́dx , (18)

where the notation Dα
x indicates that the differentiation takes place in the x variable. To address

the term Dα
xkσ(x, x́) we note that

Dα
x (e−|x|

2
) = (−1)|α|e−

|x|2
2 hα(x) ,

where the multivariate Hermite functions hα(x) =
∏d

i=1 hαi(xi) are products of the univariate.
Since

∫
R h2

k(x)dx = 2kk!
√

π (see e.g. [11]) we obtain∫
Rd

∣∣∣Dα
x (e−|x|

2
)
∣∣∣2dx =

∫
Rd

e−|x|
2
h2

α(x)dx ≤
∫

Rd

h2
α(x)dx = 2|α|α!π

d
2 , (19)

where we used the definition α! :=
∏d

i=1 αi!. Applying the translation invariance of kσ we obtain∫
Rd

∣∣Dα
xkσ(x, x́)

∣∣2dx́ =
∫

Rd

∣∣Dα
x́kσ(0, x́)

∣∣2dx́ =
∫

Rd

∣∣∣Dα
x́ (e−σ2|x́|2)

∣∣∣2dx́

and by a change of variables we can apply inequality (19) to the integral on the right side∫
Rd

∣∣∣Dα
x́ (e−σ2|x́|2)

∣∣∣2dx́ = σ2|α|−d

∫
Rd

∣∣∣Dα
x́ (e−|x́|

2
)
∣∣∣2dx́ ≤ σ2|α|−d2|α|α!π

d
2

Hence we obtain ∫
X

∫
X
|Dα

xkσ(x, x́)|2dx́dx ≤ θ(d)σ2|α|−d2|α|α!π
d
2 ,

where θ(d) is the volume of X. Since
∑

|α|≤m α! ≤ dmm!d and ‖Kσf‖2
m =

∑
|α|≤m ‖DαKσf‖2 we

can therefore infer from (18) that for σ ≥ 1 we have

‖Kσ‖ ≤
√

θ(d)(2d)
m
2 m!

d
2 σm− d

2 =: cσ,H . (20)

Now let us consider Υ2 : (L2(X),Wm(
◦
X)) 1

2
,∞ → C(X). According to Triebel [36, p. 267] we have

(
L2(X),Wm(

◦
X)
)

1
2
,∞ =

(
L2(

◦
X),Wm(

◦
X)
)

1
2
,∞ = B

m
2

2,∞(
◦
X)

isomorphically. Furthermore

logN
(
B

m
2

2,∞(
◦
X) → C(X), ε

)
≤ cm,d ε−

2d
m (21)
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for m > d follows from a similar result of Birman and Solomyak’s ([8], cf. also [36]) for Slobodeckij
(i.e. fractional Sobolev) spaces, where the constant cm,d depends only on m and d. Consequently
we obtain from (17), (20) and (21) that

logN (Jσ, ε) ≤ cm,d

(
ε

2√cσ,H

)− 2d
m

= cm,d (4cσ,H)
d
m ε−

2d
m = c̃m,d σd− d2

2m ε−
2d
m

for all m > d and new constants c̃m,d only depending on m and d. Setting m := 2d/p finishes the
proof of Theorem 3.1.

Proof of Theorem 2.1: As in the previous proof we write Hσ := Hσ(X) and Jσ := JHσ : Hσ →
C(X) in order to simplify notations. Furthermore recall that for a training set T ∈ (X × Y )n the
space L2(TX) was introduced in Subsection 2.2. Now let RTX

: C(X) → L2(TX) be the restriction
map defined by f 7→ f|TX

. Obviously, we have ‖RTX
‖ ≤ 1. Furthermore we define Iσ := RTX

◦ Jσ

so that Iσ : Hσ → L2(TX) is the evaluation map. Then Theorem 3.1 and the product rule for
covering numbers imply that

sup
T∈Zn

logN (Iσ, ε) ≤ cq,d σ(1− q
4
)dε−q (22)

for all 0 < q < 2. To complete the proof of Theorem 2.1 we derive another bound on the covering
numbers and interpolate the two. To that end observe that Iσ : Hσ → L2(TX) factors through
C(X) with both factors Js and RTX

having norm not greater than 1. Hence Proposition 17.3.7
in [23] implies that Iσ is absolutely 2-summing with 2-summing norm not greater than 1. By
König’s theorem ([24, Lem. 2.7.2]) we obtain for the approximation numbers (ak(Iσ)) of Iσ that∑

k≥1 a2
k(Iσ) ≤ 1 for all σ > 0. Since the approximation numbers are decreasing it follows that

supk k
1
2 ak(Iσ) ≤ 1. Using Carl’s inequality between approximation and entropy numbers (see

Theorem 3.1.1 in [10]) we thus find a constant c̃ > 0 such that

sup
T∈Zn

logN (Iσ, ε) ≤ c̃ε−2 (23)

for all ε > 0 and all σ > 0. Let us now interpolate the bound (23) with the bound (22). Since
‖Iσ : Hσ → L2(TX)‖ ≤ 1 we only need to consider 0 < ε ≤ 1. Let 0 < q < p < 2 and 0 < a ≤ 1.
Then for 0 < ε < a we have

logN (Iσ, ε) ≤ cq,dσ
(1− q

4)dε−q ≤ cq,dσ
(1− q

4)dap−qε−p ,

and for a ≤ ε ≤ 1 we find
logN (Iσ, ε) ≤ c̃ε−2 ≤ c̃ap−2ε−p .

Since σ ≥ 1 we can set a := σ
− 4−q

8−4q
·d and obtain

logN (Iσ, ε) ≤ c̃q,dσ
(1− p

2
)· 8−2q

8−4q
·d
ε−p ,

where c̃q,d is a constant depending only on q, d. The proof is finished by choosing q := 4δ
1+2δ when

δ < 2p
8−4p and q just smaller than p otherwise.

4 Proof of the Theorems 2.7 and 2.6

In this section we prove the Theorems 2.7 and 2.6 which both deal with the geometric noise
exponent.
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4.1 Proof of Theorem 2.7

Before we prove Theorem 2.7 we briefly explain the main idea of this proof. To this end let fP be
a Bayes decision function with values in {−1, 1} and K̂Ω,σ be a normalized variant (see definition
below (25)) of the integral operator associated to kσ on Ω ⊂ Rd. Then smoothing fP by K̂Ω,σ gives
a function K̂Ω,σfP ∈ Hσ(Ω) whose RKHS norm will be computed in Lemma 4.1. Furthermore, we
will obtain −1 ≤ K̂Ω,σfP ≤ 1 and hence the equation

Rl,P (f)−Rl,P = EPX

(
|2η − 1| |f − fP |

)
, f : X → [−1, 1], (24)

shown by Zhang [41] can be used to estimate the excess l-risk Rl,P (K̂Ω,σfP ) − Rl,P of K̂Ω,σfP .
Finally, we use the geometric noise exponent to bound |K̂Ω,σfP (x)− fP (x)|.

Let us now introduce some notations for the proof of Theorem 2.7. To this end let us first denote
the Euclidean norm on Rd by | · | in order to avoid confusions with other arising norms. Since it
will be useful to consider the integral operators and their associated RKHSs on more general sets
than the closed unit ball, let Ω ⊂ Rd be measurable and let KΩ,σ : L2(Ω) → L2(Ω) denote the
integral operator associated to the restriction of kσ to Ω. Furthermore let iΩ : L2(Ω) → L2(Rd)
denote the extension of a function on Ω by zero to the rest of Rd and rΩ : L2(Rd) → L2(Ω) denote
the restriction of a function on Rd to the set Ω. Obviously we have ‖iΩ‖ = 1, ‖rΩ‖ ≤ 1 and

KΩ,σ = rΩKRd,σiΩ. (25)

It will also be useful to consider the normalized Gaussian kernel

k̂σ(x, x′) := σdπ−
d
2 kσ(x, x′) = σdπ−

d
2 e−σ2|x−x′|2 .

Recall that its associated integral operator K̂Rd,σ is known as the Gauss-Weierstraß integral oper-
ator. Finally, we define K̂Ω,σ analogously to KΩ,σ and hence in particular we obtain an equation
analogous to (25).

Let us first compute the RKHS norm of functions mapped from L2(Ω) to Hσ(Ω) by K̂Ω,σ.

Lemma 4.1 For g ∈ L2(Ω) we have K̂Ω,σg ∈ Hσ(Ω) and

‖K̂Ω,σg‖Hσ(Ω) ≤ σ
d
2 π−

d
4 ‖g‖L2(Ω) .

Proof: Since

K̂Ω,σg = K̂
1
2
Ω,σK̂

1
2
Ω,σg = σ

d
2 π−

d
4 K

1
2
Ω,σK̂

1
2
Ω,σg

and K̂
1
2
Ω,σg ∈ L2(Ω) we observe from the discussion on RKHS in Subsection 3.1 that the first

assertion is proved. Using the shorthand notation ‖ · ‖σ for ‖ · ‖Hσ(Ω), we also obtain

‖K̂Ω,σg‖σ = σ
d
2 π−

d
4 ‖K

1
2
Ω,σK̂

1
2
Ω,σg‖σ

= σ
d
2 π−

d
4 ‖K̂

1
2
Ω,σg‖L2(Ω)

≤ σ
d
2 π−

d
4 ‖K̂

1
2
Ω,σ‖‖g‖L2(Ω) .

The continuous functional calculus theorem for self adjoint operators (see e.g. [25]) implies that

‖K̂
1
2
Ω,σ‖ = ‖K̂Ω,σ‖

1
2 . Therefore to finish the proof we only need to show that K̂Ω,σ is a contraction

on L2(Ω). To that end, recall that Young’s inequality [26] states that for convolutions we have

‖f ∗ g‖L2(Rd) ≤ ‖f‖L1(Rd)‖g‖L2(Rd)
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and since the Gauss-Weierstraß integral operator K̂Rd,σ is a convolution and
∫

σdπ−
d
2 e−σ2|x|2dx = 1

it follows that K̂Rd,σ is a contraction. From (25) we have K̂Ω,σ = rΩK̂Rd,σiΩ and since ‖iΩ‖ = 1
and ‖rΩ‖ ≤ 1 it follows that ‖K̂Ω,σ‖ ≤ 1.

Proof of Theorem 2.7: We utilize the trivial estimate

aσ(λ) ≤ λ‖f‖2
σ +Rl,P (f)−Rl,P , f ∈ Hσ(X) (26)

to bound the approximation error function through a judicious choice of function f̂ ∈ Hσ(X). To
this end let fP be any Bayes decision function with values in [−1, 1] such that fP = 1 on X1 and
fP = −1 on X−1. We will choose a function f̂ by smoothing a extension f́P of fP to X́ := 3X. To
do so first consider the extension ή of η that is constant in the outward radial direction, i.e.

ή(x) =

{
η(x), if |x| ≤ 1
η
(

x
|x|
)
, otherwise.

(27)

Let us also define X́−1 := {x ∈ X́ : ή(x) < 1
2} and X́1 := {x ∈ X́ : ή(x) > 1

2}. The following
lemma in which B(x, r) denotes the open ball of radius r about x in Rd shows that this extension
cooperates well with τx.

Lemma 4.2 For x ∈ X1, we have B(x, τx) ⊂ X́1 and for x ∈ X−1, we have B(x, τx) ⊂ X́−1.

Proof: Let x ∈ X1 and x′ ∈ B(x, τx). If x′ ∈ X we have |x − x′| < τx which implies η(x) > 1
2

by the definition of τx. This shows x′ ∈ X́1. Now let us assume |x′| > 1. Since |〈x, x′〉| ≤ |x′| and
Pythagoras theorem we then obtain∣∣∣∣ x′

|x′|
− x

∣∣∣∣2 =
∣∣∣∣ x′

|x′|
− 〈x, x′〉x′

|x′|2

∣∣∣∣2 +
∣∣∣∣〈x, x′〉x′

|x′|2
− x

∣∣∣∣2 ≤
∣∣∣∣x′ − 〈x, x′〉x′

|x′|2

∣∣∣∣2 +
∣∣∣∣〈x, x′〉x′

|x′|2
− x

∣∣∣∣2
= |x′ − x|2 .

Therefore, we have
∣∣ x′

|x′| − x
∣∣ < τx which implies ή(x′) = η

(
x′

|x′|
)

> 1
2 .

In order to proceed with the proof of Theorem 2.7 let f́P : X́ → [−1, 1] be a measurable extension
of fP that satisfies f́P = 1 on X́1 and f́P = −1 on X́−1. We define f̂ := rXK̂X́,σf́P .

Let us first determine the RKHS norm of f̂ . To this end recall that according to Aronszajn [1] we
have rXHσ(X́) ⊂ Hσ(X) and

‖rXf‖Hσ(X) ≤ ‖f‖Hσ(X́) , f ∈ Hσ(X́) .

Therefore by Lemma 4.1 applied to Ω := X́ we obtain f̂ = rXK̂X́,σf́P ∈ Hσ(X́) and

‖f̂‖Hσ(X) ≤ ‖K̂X́,σf́P ‖Hσ(X́) ≤ σ
d
2 π−

d
4 ‖f́P ‖L2(X́) ≤ σ

d
2 π−

d
4 vol(X́) = σ

d
2

(81
π

) d
4
θ(d) , (28)

where θ(d) = 2π
d
2

dΓ( d
2
)

is the volume of X.

Let us now bound the term Rl,P (f̂) − Rl,P in the right-hand side of inequality (26). To this end
observe that −1 ≤ f́P ≤ 1 obviously implies −1 ≤ iX́ f́P ≤ 1, and hence a well-known property of
the Gauss-Weierstraß integral operator yields

−1 ≤ K̂Rd,σiX́ f́P ≤ 1.
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Since K̂X́,σ = rX́K̂Rd,σiX́ and PX has support in X, Zhang’s equation (24) implies

Rl,P (f̂)−Rl,P = Rl,P

(
K̂Rd,σiX́ f́P

)
−Rl,P = EPX

(
|2η − 1| · |K̂Rd,σiX́ f́P − fP |

)
. (29)

In order to bound |K̂Rd,σiX́ f́P (x)− fP (x)| for x ∈ X1 we observe

f̂(x) =
∫

X́
k̂σ(x, x′)f́P (x′)dx′ =

∫
Rd

k̂σ(x, x′)iX́ f́P (x′)dx′

=
∫

Rd

k̂σ(x, x′)
(
iX́ f́P (x′) + 1

)
dx′ − 1

≥
∫

B(x,τx)
k̂σ(x, x′)

(
iX́ f́P (x′) + 1

)
dx′ − 1 . (30)

Now remember that Lemma 4.2 showed B(x, τx) ⊂ X́1 for all x ∈ X1 so that (30) implies

f̂(x) ≥ 2
∫

B(x,τx)
k̂σ(x, x′)dx′ − 1 = 2Pγσ

(
|u| < τx

)
− 1 = 1− 2Pγσ

(
|u| ≥ τx

)
,

where γσ = σd(π)−
d
2 e−σ2|u|2du is a spherical Gaussian in Rd. According to the tail bound [18,

inequality (3.5) on p. 59] we have Pγσ(|u| ≥ r) ≤ 4e−σ2r2/4d and consequently we obtain

1 ≥ f̂(x) ≥ 1− 8e−σ2τ2
x/4d

for all x ∈ X1. Since for x ∈ X−1 we analogously obtain −1 ≤ f̂(x) ≤ −1 + 8e−σ2τ2
x/4d we conclude∣∣K̂Rd,σiX́ f́P (x)− fP (x)

∣∣ ≤ 8e−σ2τ2
x/4d

for all x ∈ X1 ∪X−1. Consequently (29) and the geometric noise assumption for t := 4d
σ2 yields

Rl,P (f̂)−Rl,P ≤ 8Ex∼PX

(
|2η(x)− 1|e−σ2τ2

x/4d
)
≤ 8C(4d)

αd
2 σ−αd , (31)

where C is the constant in (10). Now using (31) and (28) the estimate (26) applied to f̂ implies
the assertion.

4.2 Proof of Theorem 2.6

In this subsection, all Lebesgue and Lorentz spaces (see e.g. [5]) and their norms are with respect
to the measure PX .

Proof of Theorem 2.6: Let us first consider the case q ≥ 1 where we can apply the Hölder
inequality for Lorentz spaces ([22]) which states

‖fg‖1 ≤ ‖f‖q,∞‖g‖q′,1

for all f ∈ Lq,∞, g ∈ Lq′,1 and q′ defined by 1
q + 1

q′ = 1. Applying this inequality gives

Ex∼PX

(
|2η(x)− 1|e−τ2

x/t
)

≤ ‖(2η − 1)−1‖q,∞

∥∥∥x 7→ (
2η(x)− 1

)2
e−

τ2
x
t

∥∥∥
q′,1

≤ C
∥∥∥(2η − 1

)2
e
−
(
|2η−1|

cγ

) 2
γ

t−1
∥∥∥

q′,1
(32)
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where in the last estimate we used the Tsybakov assumption (7) and the fact that P has an envelope
of order γ. Let us write h(x) := |2η(x)− 1|−1, x ∈ X, and b := t(cγ)

2
γ so that

|2η(x)− 1|2e−
(
|2η−1|

cγ

) 2
γ

t−1

= g
(
h(x)

)
,

where g(s) := s−2e−
s
− 2

γ

b for all s ≥ 1. Now it is easy to see that g : [1,∞) → [0,∞) is strictly
increasing whenever 0 < b ≤ 2

3γ and hence we can extend g to a strictly increasing, continuous and
invertible function on [0,∞) in this case. Let us denote such an extension also by g. Then for this
extension we have

PX

(
g ◦ h > τ

)
= PX

(
h > g−1(τ)

)
. (33)

Now for a function f : X → [0,∞) recall the non-increasing rearrangement

f∗(u) := inf
{
σ ≥ 0 : PX(f > σ) ≤ u

}
, u > 0

of f which can be used to define Lorentz norms (see e.g. [5]). For u > 0 equation (33) then yields

(g ◦ h)∗(u) = inf
{
σ : PX

(
h > g−1(σ)

)
≤ u

}
= g
(
inf
{

g−1(σ) : PX

(
h > g−1(σ)

)
≤ u

})
= g ◦ h∗(u)

Now, inequality (7) implies PX

(
h ≥

(
C
u

)1/q) ≤ u for all u > 0. Therefore, we find

h∗(u) = inf
{
σ ≥ 0 : PX(h > σ) ≤ u

}
≤ inf

{
σ ≥ 0 : PX(h ≥ σ) ≤ u

}
≤
(C

u

) 1
q

for all 0 < u < 1. Since (g ◦ h)∗ = g ◦ h∗ and g is increasing we hence have

(g ◦ h)∗(u) ≤ g
((C

u

) 1
q
)

for all 0 < u < 1. Now, for fixed α̂ > 0 the bound e−x � x−α̂

ln2 (x)+1
on (0,∞) implies

g(s) � bα̂ s2(α̂/γ−1)

ln2
(
s−2/γb−1

)
+ 1

for s ∈ [1,∞). Using that (g ◦ h)∗(u) = 0 holds for all u ≥ 1, we hence obtain

(g ◦ h)∗(u) � bα̂ u
2
q

“
1− α̂

γ

”
ln2
((

u
C

) 2
qγ b−1

)
+ 1

.

for u > 0 if we assume without loss of generality that C ≥ 1. Let us define α̂ := γ q+1
2 . Then we

find 1
q′ + 2

q (1− α̂
γ ) = 0 and consequently for b ≤ 2

3γ , i.e. t ≤ 2
3γ(cγ)2/γ , we obtain

‖g ◦ h‖q′,1 =
∫ ∞

0
u

1
q′−1(g ◦ h)∗(u)du � bα̂

∫ ∞

0

u−1

ln2
(
( u

C )
2

qγ b−1
)

+ 1
du � tγ

q+1
2 (34)

by the definition on b. Since we also have EPX
(|2η(x) − 1|e−τ2

x/t) ≤ 1 for all t > 0 estimate (32)
together the definition of g and (34) yields the assertion in the case q ≥ 1.
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Let us now consider the case 0 ≤ q < 1 where the Hölder inequality in Lorentz space cannot be
used. Then for all t, τ ≥ 0 we have

Ex∼PX

(
|2η(x)− 1|e−

τ2
x
t

)
=

∫
|2η−1|≤τ

|2η(x)− 1|e−
τ2
x
t PX(dx) +

∫
|2η−1|>τ

|2η(x)− 1|e−
τ2
x
t PX(dx)

≤ Cτ q+1 + exp
(
−
( τ

cγ

) 2
γ
t−1
)

, (35)

where we used the Tsybakov assumption (7) and the fact that P has an envelope of order γ. Let
us define τ by τ q+1 := exp(−( τ

cγ
)2/γt−1) . For â := (cγ)2/γ(q + 1) and small t this definition implies

τ ≤
( âγ

2

) γ
2
(
t ln

1
ât

) γ
2

and hence the assertion follows from (35) for the case 0 < q < 1.

5 The estimation error of ERM-type classifiers

In order to bound the estimation error in the proof of Theorem 2.8 we now establish a concentration
inequality for ERM-type algorithms which is based on a variant of Talagrand’s concentration in-
equality. Our approach is inspired by a similar result of [4] which uses a complexity measure closely
related to local Rademacher averages. The latter have been intensively studied in learning theory
in recent years (see [21], [2], and [3]). One of the main features of the concentration inequalities
using local Rademacher averages is that they all need a so-called “variance bound” of the form
EP g2 ≤ c (EP g)α for constants α > 0, c > 0, and certain functions g. However, for L1-SVMs and
distributions P satisfying Tsybakov’s noise condition for some 0 < q ≤ ∞ the “sharpest” variance
bounds we can show in Section 6 are of the form EP g2 ≤ c (EP g)α + δ with δ > 0, where both c
and δ depend on the regularization parameter λ. Since the latter changes with n → ∞ the above
mentioned theory must be adapted to this more general situation in order to obtain a full control
over the crucial values c and δ.

This section is organized as follows: In Subsection 5.1 we present the required modification of
the result of [4]. Then in Subsection 5.2 we bound the arising local Rademacher averages.

5.1 Bounding the estimation error using local Rademacher averages

We first have to introduce some notations. To this end let F be a class of bounded measurable
functions from Z to R. In order to avoid measurability considerations we always assume that F
is separable with respect to ‖.‖∞. Given a probability measure P on Z we define the modulus of
continuity of F by

ωn(F , ε) := ωP,n(F , ε) := ET∼P n

(
sup
f∈F ,

EP f2≤ε

|EP f − ET f |
)

,

where we emphasize that the supremum is, as a function from Z to R, measurable by the separability
assumption on F . The modulus of continuity will serve as a complexity measure in the main theorem
of this section. In Subsection 5.2 we will then bound ωn(F , ε) by local Rademacher averages which
themselves are treated by certain covering numbers.
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We also need some notations related to ERM-type algorithms: let F be as above and L :
F × Z → [0,∞) be a function. We call L a loss function if L ◦ f := L(f, .) is measurable for all
f ∈ F . Given a probability measure P on Z we denote by fP,F ∈ F a minimizer of

f 7→ RL,P (f) := Ez∼P L(f, z).

Throughout this paper RL,P (f) is called the L-risk of f . If P is an empirical measure with respect
to T ∈ Zn we write fT,F and RL,T (.) as usual. For simplicity, we assume throughout this section
that fP,F and fT,F do exist. Furthermore, although there may be multiple solutions we use a
single symbol for them whenever no confusion regarding the non-uniqueness of this symbol can
be expected. An algorithm that produces solutions fT,F is called an empirical L-risk minimizer.
Moreover, if F is convex, we say that L is convex if L(., z) is convex for all z ∈ Z. Finally, L
is called line-continuous if for all z ∈ Z and all f, f̂ ∈ F the function t 7→ L(tf + (1 − t)f̂ , z) is
continuous on [0, 1]. If F is a vector space then every convex L is line-continuous. Now the main
result of this section reads as follows:

Theorem 5.1 Let F be a convex set of bounded measurable functions from Z to R, and let L :
F × Z → [0,∞) be a convex and line-continuous loss function. For a probability measure P on Z
we define

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F

}
.

Suppose that there are constants c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with EP g2 ≤ c (EP g)α + δ and
‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that G is separable with respect to ‖.‖∞. Let n ≥ 1,
x ≥ 1 and ε > 0 with

ε ≥ 10 max
{

ωn(G, cεα + δ),

√
δx

n
,

(
4cx

n

) 1
2−α

,
Bx

n

}
.

Then we have
Pr∗
(
T ∈ Zn : RL,P (fT,F ) < RL,P (fP,F ) + ε

)
≥ 1− e−x .

Remark 5.2 Theorem 5.1 has been proved in [4] for δ = 0. In this case its main advantage compared to
the “standard analysis” using uniform deviation bounds is that it can produce rates faster than n−

1
2 for

risk deviations. For a further discussion of this issue we refer to [4]. If δ > 0 the above theorem apparently
cannot produce rates faster than n−

1
2 . However, in order to decrease the approximation error, the class F

and (thus G) increases with n for many algorithms. If for such sequences (Fn) we can show that δn → 0

then the term
√

δx
n no longer prohibits rates faster than n−

1
2 . As we will see in Section 6 this phenomenon

actually occurs for L1-SVMs and distributions satisfying Tsybakov’s noise assumption for some exponent
q > 0. Namely, we will show that the rate of δn → 0 and the values of both c and B are determined by
the approximation error function. In particular, in our analysis approximation properties of H will heavily
influence the estimation error. As far as we know such an interweaving of approximation and estimation
error has never been observed or analyzed before.

As already mentioned, the proof of Theorem 5.1 is based on Talagrand’s concentration inequality
in [35] and its refinements in [27], [17], [20]. The below version of this inequality is derived from
Bousquet’s result in [9] using a little trick presented in [3, Lem. 2.5]:

Theorem 5.3 Let P be a probability measure on Z and H be a set of bounded measurable func-
tions from Z to R which is separable with respect to ‖.‖∞ and satisfies EP h = 0 for all h ∈ H.
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Furthermore, let b > 0 and τ ≥ 0 be constants with ‖h‖∞ ≤ b and EP h2 ≤ τ for all h ∈ H. Then
for all x ≥ 1 and all n ≥ 1 we have

Pn

(
T ∈ Zn : sup

h∈H
ET h > 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+

bx

n

)
≤ e−x .

This concentration inequality is used to prove the following lemma which is a generalized version
of Lemma 13 in [4]:

Lemma 5.4 Let P be a probability measure on Z and G be a set of bounded measurable functions
from Z to R which is separable with respect to ‖.‖∞. Let c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 be
constants with EP g2 ≤ c (EP g)α + δ and ‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that for all
T ∈ Zn and all ε > 0 for which for some g ∈ G we have

ET g ≤ ε/20 and EP g ≥ ε

there is a g∗ ∈ G which satisfies

ET g∗ ≤ ε/20 and EP g∗ = ε .

Then for all n ≥ 1, x ≥ 1, and all ε > 0 satisfying

ε ≥ 10 max
{

ωn(G, cεα + δ),

√
δx

n
,

(
4cx

n

) 1
2−α

,
Bx

n

}
we have

Pr∗
(
T ∈ Zn : for all g ∈ G with ET g ≤ ε/20 we have EP g < ε

)
≥ 1− e−x .

Proof: We define H := {EP g − g : g ∈ G, EP g = ε}. Obviously, we have EP h = 0, ‖h‖∞ ≤ 2B,
and EP h2 = EP g2 − (EP g)2 ≤ cεα + δ for all h ∈ H. Moreover, since it is also easy to verify that
H is separable with respect to ‖.‖∞, our assumption on G yields

Pr∗
(
T ∈ Zn : ∃g ∈ G with ET g ≤ ε/20 and EP g ≥ ε

)
≤ Pr∗

(
T ∈ Zn : ∃g ∈ G with ET g ≤ ε/20 and EP g = ε

)
= Pr∗

(
T ∈ Zn : ∃g ∈ G with EP g − ET g ≥ 19ε/20 and EP g = ε

)
≤ Pn

(
T ∈ Zn : sup

g∈G
EP g=ε

(EP g − ET g) ≥ 19ε/20
)

= Pn
(
T ∈ Zn : sup

h∈H
ET h ≥ 19ε/20

)
.

Note, that since H is separable with respect to ‖.‖∞ the sets in the last two lines are actually
measurable. In order to bound the last probability we will apply Theorem 5.3. To this end we have

to show 19ε
20 > 3ET ′∼P n suph∈H ET ′h +

√
2xτ
n + bx

n . Our assumptions on ε imply

ε ≥ 10ET ′∼P n

(
sup
g∈G,

EP g2≤cεα+δ

|EP g − ET ′g|
)
≥ 10ET ′∼P n sup

h∈H
ET ′h . (36)
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Furthermore, since 10 ≥
(

60
19

)2 and 0 < α ≤ 1 we have

ε ≥ 10
(

4cx

n

) 1
2−α

≥ 10

(
1
10

·
(

60
19

)2
) 1

2−α (4cx

n

) 1
2−α

≥
(

60
19

) 2
2−α

(
4cx

n

) 1
2−α

(37)

If δ ≤ cεα we hence find

ε ≥
(

60
19

) 2
2−α

(
2(cεα + δ)x

εαn

) 1
2−α

,

which implies 19
60ε ≥

√
2(cεα+δ)x

n . Furthermore, if δ > cεα the assumptions of the theorem shows

ε ≥ 10

√
δx

n
≥ 60

19

√
4δx

n
≥ 60

19

√
2(cεα + δ)x

n
.

Hence we have 19
60ε ≥

√
2(cεα+δ)x

n for all ε satisfying the assumptions of the theorem. Now let
τ := cεα + δ and b := 2B. By (36) and ε ≥ 10Bx

n we then find

19ε

20
≥ 19

6
ET ′∼P n sup

h∈H
ET ′h +

√
2(cεα + δ)x

n
+

19Bx

6n
> 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+

bx

n
.

Applying Theorem 5.3 then yields

Pr∗
(
T ∈ Zn : ∃g ∈ G with ET g ≤ ε/20 and EP g ≥ ε

)
≤ Pn

(
T ∈ Zn : sup

h∈H
ET h ≥ 19ε/20

)
≤ Pn

(
T ∈ Zn : sup

h∈H
ET h > 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+

bx

n

)
≤ e−x .

With the help of the above lemma we can now prove the main result of this section, that is
Theorem 5.1:

Proof of Theorem 5.1: In order to apply Lemma 5.4 to the class G it obviously suffices to show
the richness condition on G of Lemma 5.4. To this end let f ∈ F with

ET (L ◦ f − L ◦ fP,F ) ≤ ε/20
EP (L ◦ f − L ◦ fP,F ) ≥ ε .

For t ∈ [0, 1] we define ft := tf +(1− t)fP,F . Since F is convex we have ft ∈ F for all t ∈ [0, 1]. By
the line-continuity of L and Lebesgue’s theorem we find that the map h : t 7→ EP (L ◦ ft−L ◦ fP,F )
which maps from [0, 1] to [0, B] is continuous. Since h(0) = 0 and h(1) ≥ ε there is a t ∈ (0, 1] with

EP (L ◦ ft − L ◦ fP,F ) = h(t) = ε

by the intermediate value theorem. Moreover, for this t we have

ET (L ◦ ft − L ◦ fP,F ) ≤ ET

(
tL ◦ f + (1− t)L ◦ fP,F − L ◦ fP,F

)
≤ ε/20 .
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Now, let ε > 0 with ε ≥ 10 max
{
ωn(G, cεα + δ),

(
δx
n

) 1
2 ,
(

4cx
n

) 1
2−α , Bx

n

}
. Then, by Lemma 5.4 we

find that with probability at least 1− e−x every f ∈ F with ET (L ◦ f − L ◦ fP,F ) ≤ ε/20 satisfies
EP (L ◦ f − L ◦ fP,F ) < ε. Since we always have

ET

(
L ◦ fT,F − L ◦ fP,F

)
≤ 0 < ε/20

we obtain the assertion.

5.2 Bounding the local Rademacher averages

The aim of this subsection is to bound the modulus of continuity of the class G in Theorem 5.1. To
this end we will first relate the modulus of continuity to local Rademacher averages. Then we will
bound these averages with the help of covering numbers associated to G and reformulate Theorem
5.1.

Let us first recall the definition of (local) Rademacher averages. To this end let F be a class of
bounded measurable functions from Z to R which is separable with respect to ‖.‖∞. Furthermore,
let P be a probability measure on Z and (εi) be a sequence of i.i.d. Rademacher variables (that is,
symmetric {−1, 1}-valued random variables) with respect to some probability measure µ on a set
Ω. The Rademacher average of F is

RadP (F , n) := Rad(F , n) := EP nEµ sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(zi)

∣∣∣∣∣ .

Rademacher averages have been intensively used in empirical process theory. For more information
we refer to [38]. Now for ε > 0 the local Rademacher average of F is defined by

Rad(F , n, ε) := RadP (F , n, ε) := EP nEµ sup
f∈F ,

EP f2≤ε

∣∣∣∣∣ 1n
n∑

i=1

εif(zi)

∣∣∣∣∣ .

Obviously, the local Rademacher average is a Rademacher average of a restricted function class.
Furthermore for a given real number a > 0 we immediately obtain Rad(aF , n) = aRad(F , n) and

Rad(aF , n, ε) = aRad(F , n, a−2ε) . (38)

Finally, by symmetrization the modulus of continuity can be estimated by the local Rademacher
average. More precisely, we always have (see [38])

ωP,n(F , ε) ≤ 2RadP (F , n, ε) .

In the following we estimate Rademacher averages in terms of covering numbers using the
path of [21]. Since we are interested in the arising constants, we add the proofs for the sake of
completeness. We begin by recalling an extension of a theorem of Dudley to subgaussian processes
proved in [38]. For the formulation we also refer to [21]:

Theorem 5.5 There exists a universal constant C > 0 such that for all ‖.‖∞-separable sets F of
measurable functions from Z to [−1, 1], all probability measures P on Z, and all n ≥ 1 we have

Rad(F , n) ≤ C√
n

ET∼P n

δT∫
0

√
logN

(
F , ε, L2(T )

)
dε ,

where δT := supf∈F ‖f‖L2(T ).
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The next theorem due to Talagrand [35] estimates the expected diameter of F when interpreted
as a subset of L2(T ):

Theorem 5.6 Let F be a class of measurable functions from Z to [−1, 1] which is separable with
respect to ‖.‖∞ and P be a probability measure on Z. Then we have

ET∼P n sup
f∈F

‖f‖2
L2(T ) ≤ 8Rad(F , n) + sup

f∈F
EP f2 .

With the help of the above theorems we now can establish the following bound on the local
Rademacher averages which is a slight modification of a result in [21]:

Proposition 5.7 Let F be a class of measurable functions from Z to [−1, 1] which is separable
with respect to ‖.‖∞ and let P be a probability measure on Z. Assume there are constants a > 0
and 0 < p < 2 with

sup
T∈Zn

logN
(
F , ε, L2(T )

)
≤ aε−p

for all ε > 0. Then there exists a constant cp > 0 depending only on p with

Rad(F , n, ε) ≤ cp max
{

ε1/2−p/4
(a

n

)1/2
,
(a

n

)2/(2+p)
}

.

Proof: We write Fε := {f : f ∈ F and EP f2 ≤ ε} and δT := supf∈Fε
‖f‖L2(T ). Then applying

Theorem 5.5 and Theorem 5.6 to Fε yields

Rad(F , n, ε) ≤ C√
n

ET∼P n

δT∫
0

√
logN

(
Fε, δ, L2(T )

)
dδ ≤ C

√
a√

n
ET∼P n

δT∫
0

δ−p/2dδ

≤ cp
√

a√
n

ET∼P nδ
1−p/2
T

≤ cp
√

a√
n

(
ET∼P nδ2

T

)1/2−p/4

≤ cp
√

a√
n

(
8Rad(F , n, ε) + ε

)1/2−p/4
,

where cp > 0 is a constant depending only on p. If ε ≥ Rad(F , n, ε) we hence find

Rad(F , n, ε) ≤ c′p
√

a ε1/2−p/4n−1/2 ,

where c′p := 91/2−p/4cp. Conversely, if ε < Rad(F , n, ε) we obtain

Rad(F , n, ε) ≤
c′p
√

a
√

n

(
Rad(F , n, ε)

)1/2−p/4
,

which implies

Rad(F , n, ε) ≤ c′′p

(a

n

)2/(2+p)
,

where c′′p > 0 is a constant depending only on p.

Using the above proposition we may now replace the modulus of continuity in Theorem 5.1 by
an assumption on the covering numbers of G. As in Section 5 we assume that all minimizers exist.
Then the corresponding result reads as follows:
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Theorem 5.8 Let F be a convex set of bounded measurable functions from Z to R and let L :
F × Z → [0,∞) be a convex and line-continuous loss function. For a probability measure P on Z
we define

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F

}
.

Suppose that there are constants c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with EP g2 ≤ c (EP g)α + δ and
‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that G is separable with respect to ‖.‖∞ and that
there are constants a ≥ 1 and 0 < p < 2 with

sup
T∈Zn

logN
(
B−1G, ε, L2(T )

)
≤ aε−p (39)

for all ε > 0. Then there exists a constant cp > 0 depending only on p such that for all n ≥ 1 and
all x ≥ 1 we have

Pr∗
(
T ∈ Zn : RL,P (fT,F ) > RL,P (fP,F ) + cp ε(n, a, B, c, δ, x)

)
≤ e−x ,

where

ε(n, a, B, c, δ, x) := B
2p

4−2α+αp c
2−p

4−2α+αp

(a

n

) 2
4−2α+αp + B

p
2 δ

2−p
4

(a

n

) 1
2 + B

(a

n

) 2
2+p

+

√
δx

n
+
(cx

n

) 1
2−α +

Bx

n
.

Proof: By (38) and Proposition 5.7 we find

Rad(G, n, ε) = B Rad(B−1G, n,B−2ε) ≤ cpB max
{

B−1+ p
2 ε

1
2
− p

4

(a

n

) 1
2
,
(a

n

) 2
2+p

}
= cp max

{
B

p
2 ε

1
2
− p

4

(a

n

) 1
2
, B
(a

n

) 2
2+p

}
.

We assume without loss generality that cp ≥ 5. Let ε∗ > 0 be the largest real number that satisfies

ε∗ = 2cpB
p
2
(
c(ε∗)α + δ

) 1
2
− p

4

(a

n

) 1
2
. (40)

Furthermore, let ε > 0 be a such that

ε = 2cp max
{

B
p
2 (cεα + δ)

2−p
4

(a

n

) 1
2
, B
(a

n

) 2
2+p

,

√
δx

n
,

(
4cx

n

) 1
2−α

,
Bx

n

}
.

It is easy to see that both ε and ε∗ exist. Moreover, our above considerations show ε ≥
10 max

{
ωn(G, cεα + δ),

(
δx
n

) 1
2 ,
(

4cx
n

) 1
2−α , Bx

n

}
, i.e. ε satisfies the assumptions of Theorem 5.1. In

order to show the assertion it therefore suffices to bound ε from above. To this end let us first
assume that

B
p
2 (cεα + δ)

2−p
4

(a

n

) 1
2 ≥ max

{
B
(a

n

) 2
2+p

,

√
δx

n
,

(
4cx

n

) 1
2−α

,
Bx

n

}
.

Then we have ε = 2cpB
p
2 (cεα +δ)

2−p
4 ( a

n)
1
2 . Since ε∗ is the largest solution of this equation we hence

find ε ≤ ε∗. This shows that we always have

ε ≤ ε∗ + 2cp

(
B
(a

n

) 2
2+p +

√
δx

n
+
(

4cx

n

) 1
2−α

+
Bx

n

)
.
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Hence it suffices to bound ε∗ from above. To this end let us first assume c(ε∗)α ≥ δ. This implies
ε∗ ≤ 4cpB

p/2
(
c · (ε∗)α

)1/2−p/4( a
n

)1/2, and hence we find

ε∗ ≤ 16c2
pB

2p
4−2α+αp c

2−p
4−2α+αp

(a

n

) 2
4−2α+αp

.

Conversely, if c(ε∗)α < δ holds then we immediately obtain

ε∗ < 4cp B
p
2 δ

2−p
4

(a

n

) 1
2
.

6 Variance bounds for L1-SVMs

In this section we prove some “variance bounds” in the sense of Theorem 5.1 and Theorem 5.8 for
L1-SVMs.

Let us first ensure that these classifiers are ERM-type algorithms that fit into the framework
of Theorem 5.8. To this end let H be a RKHS of a continuous kernel over X, λ > 0, and
l : Y × R → [0,∞) be the hinge loss function. We define

L(f, x, y) := λ‖f‖2
H + l(y, f(x)) (41)

and
L(f, b, x, y) := λ‖f‖2

H + l(y, f(x) + b) (42)

for all f ∈ H, b ∈ R, x ∈ X, and y ∈ Y . Then RL,T (.) and RL,T (., .) obviously coincide with the
objective functions of the L1-SVM formulations and hence we see that the L1-SVMs implement
an empirical L-risk minimization. Furthermore note, that all above minimizers exist (see [33]) and
thus the L1-SVM formulations in terms of L actually fit into the framework of Theorem 5.8.

The rest of this section is organized as follows: in the first subsection we establish a variance
bound which holds for all distributions P on X × Y . In the second subsection we will improve this
variance bound for probability measures having some Tsybakov noise exponent q > 0.

6.1 Bounding the variance for L1-SVMs—the general case

Let us begin with stating the main result of this subsection which gives a “variance bound” for the
class G defined in Theorem 5.1 for L1-SVMs without offset:

Proposition 6.1 Let 0 < λ < 1, H be a RKHS over X, and F ⊂ λ−
1
2 BH . Furthermore, let L be

defined by (41) and P be a probability measure. We write

G :=
{
L ◦ f − L ◦ fP,F : f ∈ F

}
.

Then for all g ∈ G we have

EP g2 ≤ (4 + 2K)2

2λ
EP g .

Remark 6.2 Proposition 6.1 establishes a variance bound of the form EP g2 ≤ c (EP g)α + δ with α = 1,
c = (4+2K)2

2λ , and δ = 0. In particular, by substituting α by 1 and for x ≥ 1 the term ε(n, a, B, c, δ, x) in
Theorem 5.8 can be estimated by

ε(n, a, B, c, δ, x) � B
2p

2+p c
2−p
2+p

(a

n

) 2
2+p

+ xB
(a

n

) 2
2+p

+
cx

n
. (43)
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Remark 6.3 Unfortunately, our techniques heavily rely on the strict convexity of the RKHS norm and
hence it turns out that they can only be used for L1-SVMs without offset.

For the proof of the above proposition we need some notations. To this end let λ > 0, H be
a RKHS over X, and F ⊂ λ−

1
2 BH . Furthermore, we assume that l denotes—as usual—the hinge

loss and L is defined by (41). We define the “metric”

dx,y(f, g) := 2
√

λ‖f − g‖H + |f(x)− g(x)|

for all (x, y) ∈ X × Y and all f, g ∈ F . Note that L is “point-wise Lipschitz continuous” with
respect to dx,y, i.e. we have ∣∣L(f, x, y)− L(g, x, y)

∣∣ ≤ dx,y(f, g)

for all (x, y) ∈ X × Y and all f, g ∈ F . Our ansatz is a modification of the idea presented in [4]
which uses a modulus of convexity in order to quantify the convexity of the loss function. In our
situation the strict convexity of L is due to the RKHS norm of the regularization term. This is
reflected in the definition of dx,y as well as in the following definition: for ε > 0 the “modulus of
convexity of L” is defined by

δ(ε) := inf
{

L(f, x, y) + L(g, x, y)
2

−L

(
f + g

2
, x, y

)
: (x, y) ∈ X×Y, f, g ∈ F with dx,y(f, g) ≥ ε

}
.

Since L is convex in f it is easy to see that δ(ε) ≥ 0 for all ε > 0. In the next lemma we establish
a stronger lower estimate of δ(.).

Lemma 6.4 Let 0 < λ < 1 and ε > 0. Then with the above notation we have

δ(ε) ≥ λε2

(4 + 2K)2
.

Proof: Let x ∈ X, y ∈ Y and f, g ∈ F with dx,y(f, g) ≥ ε. Then we find ε ≤ 2
√

λ‖f − g‖H +
|f(x) − g(x)| ≤ (2 + K)‖f − g‖H . Since l is convex and the norm ‖.‖ of the RKHS satisfies the
parallelogram law we then have

L(f, x, y) + L(g, x, y)
2

− L

(
f + g

2
, x, y

)
= λ

‖f‖2 + ‖g‖2

2
− λ
∥∥∥f + g

2

∥∥∥2
+

l(y, f(x)) + l(y, g(x))
2

− l

(
y,

f(x) + g(x)
2

)
≥ λ

∥∥∥f − g

2

∥∥∥2

≥ λε2

(4 + 2K)2
.

Let us now define a “modulus of continuity” for the L-risk f 7→ RL,P (f). To this end we write
dP (f, g) :=

(
E(x,y)∼P d 2

x,y(f, g)
)1/2 for all f, g ∈ F , and

δP (ε) := inf
{
RL,P (f) +RL,P (g)

2
−RL,P

(
f + g

2

)
: f, g ∈ F with dP (f, g) ≥ ε

}
.

Again, it is easy to see that δP (ε) ≥ 0 for all ε > 0 by the convexity of L. The next lemma which
is based on Lemma 6.4 significantly improves this lower bound on δP (ε).
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Lemma 6.5 Let 0 < λ < 1, ε > 0, and P be a distribution on X × Y . Then with the above
notation we have

δP (ε) ≥ λε2

(4 + 2K)2
.

Proof: Let f and g with dP (f, g) ≥ ε. Then by Lemma 6.4 we find

RL,P (f) +RL,P (g)
2

−RL,P

(
f + g

2

)
= E(x,y)∼P

(
L(f, x, y) + L(g, x, y)

2
− L

(f + g

2
, x, y

))
≥ E(x,y)∼P δ(dx,y(f, g))

≥ λε2

(4 + 2K)2
.

Proof of Proposition 6.1: By the definition of the modulus of convexity δP , the definition of
fP,F and Lemma 6.5 we obtain

RL,P (f) +RL,P (fP,F )
2

≥ RL,P

(
f + fP,F

2

)
+ δP

(
dP (f, fP,F )

)
≥ RL,P (fP,F ) + δP

(
dP (f, fP,F )

)
≥ RL,P (fP,F ) +

λd2
P (f, fP,F )

(4 + 2K)2

for all f ∈ F . For g := L ◦ f − L ◦ fP,F we hence have

EP g = RL,P (f)−RL,P (fP,F ) ≥ 2
λd2

P (f, fP,F )
(4 + 2K)2

.

Furthermore, since L is point-wise Lipschitz-continuous with respect to dx,y we find

EP g2 = EP

(
L ◦ f − L ◦ fP,F

)2 ≤ E(x,y)∼P d 2
x,y(f, fP,F )

)
= d2

P (f, fP,F ) .

6.2 Bounding the variance for L1-SVMs—Tsybakov’s noise condition

As we have seen in the previous subsection we always have a variance bound for the L1-SVM in the
sense of Theorem 5.1. Besides the fact that this bound was only established for L1-SVMs without
offset it appears to be sharp since it has the “optimal” values α = 1 and δ = 0. However, it turns
out that if we want to show rates faster than n−

1
2 we need a variance bound which is less sensitive

to the regularization parameter λ. In this subsection we will establish such bounds for underlying
distributions P satisfying Tsybakov’s noise assumption for some exponent q > 0. An additional
benefit of the approach of this subsection is that it can also be used for L1-SVMs with offset. In
fact besides slightly larger constants the results are the same.

As in the last subsection l denotes the hinge loss. If no confusion can arise, fl,P denotes a
minimizer of Rl,P . For the shape of these minimizers which depend on η := P (y = 1| . ) we refer to
[41] and [32]. We begin with a variance bound which can be used when considering the empirical
l-risk minimizer:
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Lemma 6.6 Let P be a distribution on X × Y with Tsybakov noise exponent 0 < q ≤ ∞. Then
there exists a minimizer fl,P mapping into [−1, 1] such that for all bounded measurable functions
f : X → R we have

EP

(
l ◦ f − l ◦ fl,P

)2 ≤
(
‖(2η − 1)−1‖q,∞ + 2

) (
‖f‖∞ + 1

) q+2
q+1

(
EP

(
l ◦ f − l ◦ fl,P

)) q
q+1

.

Proof: Given a fixed x ∈ X we write p := P (1|x) and t := f(x). Since Tsybakov’s noise assump-
tion implies PX(X0) = 0 we can restrict our considerations to p 6= 1/2. We will show

p
(
l(1, t)− l(1, fl,P (x))

)2 + (1− p)
(
l(−1, t)− l(−1, fl,P (x))

)2
≤

(
|t|+ 2

|2p− 1|

)(
p
(
l(1, t)− l(1, fl,P (x))

)
+ (1− p)

(
l(−1, t)− l(−1, fl,P (x))

))
. (44)

Without loss of generality we may assume p > 1/2. Then we may set fl,P (x) := 1 and thus we
have l(1, fl,P (x)) = 0 and l(−1, fl,P (x)) = 2. Therefore (44) reduces to

p l2(1, t) + (1− p)
(
l(−1, t)− 2

)2 ≤
(
|t|+ 2

2p− 1

)(
p l(1, t) + (1− p)

(
l(−1, t)− 2

))
. (45)

Let us first consider the case t ∈ [−1, 1]. Since we then have l(1, t) = 1− t and l(−1, t) = 1 + t we
find

p l2(1, t) + (1− p)
(
l(−1, t)− 2

)2 = p(1− t)2 + (1− p)(t− 1)2 = (1− t)2

and
p l(1, t) + (1− p)

(
l(−1, t)− 2

)
= p(1− t) + (1− p)(t− 1) = (2p− 1)(1− t) .

Therefore, (45) reduces to

(1− t)2 ≤
(
|t|+ 2

2p− 1

)
(2p− 1)(1− t) .

Obviously, the latter inequality is equivalent to 1− t ≤ (2p− 1)|t|+ 2 which is always satisfied for
t ∈ [−1, 1] and p ≥ 1/2.

Now let us consider the case t ≤ −1. Since we then have l(1, t) = 1− t and l(−1, t) = 0 we find

p l2(1, t) + (1− p)
(
l(−1, t)− 2

)2 = p(1− t)2 + 4(1− p)

and
p l(1, t) + (1− p)

(
l(−1, t)− 2

)
= p(1− t)− 2(1− p) .

Therefore, it suffices to show

p(1− t)2 + 4(1− p) ≤
(
−t +

2
2p− 1

)(
p(1− t) + 2(p− 1)

)
.

It is easy to check that this inequality is equivalent to

4− 3p ≤ −2p2 − 3p + 2
2p− 1

t +
6p− 4
2p− 1

.

Since 6p−4
2p−1 − 4 + 3p = 6p2−5p

2p−1 we thus have to show

p2(6− 2t)− p(5− 3t)− 2t ≥ 0 .
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The left hand side is minimal if p = 5−3t
12−4t . Therefore, we obtain

p2(6−2t)−p(5−3t)−2t ≥
(

5− 3t

12− 4t

)2

(6−2t)− (5− 3t)2

12− 4t
−2t = −(5− 3t)2

24− 8t
−2t =

7t2 − 18t− 25
24− 8t

and hence it suffices to show 7t2 − 18t − 25 ≥ 0. However, the latter is true for all t ≤ −1 since
t 7→ 7t2 − 18t− 25 is decreasing on (−∞,−1].

Now, let us consider the third case t > 1. Since we then have l(1, t) = 0 and l(−1, t) = 1+ t we find

p l2(1, t) + (1− p)
(
l(−1, t)− 2

)2 = (1− p)(t− 1)2

and
p l(1, t) + (1− p)

(
l(−1, t)− 2

)
= (1− p)(t− 1) .

Therefore, it suffices to show

t− 1 ≤ t +
2

2p− 1
.

Since this is always true we have proved (45). Furthermore, for p < 1
2 the proof of (44) is completely

analogous and therefore (44) holds.

Now, let us write g(y, x) := l(y, f(x))− l(y, fl,P (x)), h1(x) := η(x)g(1, x) + (1− η(x))g(−1, x), and
h2(x) := η(x)g2(1, x) + (1 − η(x))g2(−1, x). Then (44) yields h2(x) ≤

(
‖f‖∞ + 2

|2η(x)−1|
)
h1(x) for

all x with η(x) 6= 1/2. Hence for t ≥ 1 we find

EP g2 =
∫

|2η−1|−1<t

h2 dPX +
∫

t≤|2η−1|−1<∞

h2 dPX

≤
(
‖f‖∞ + 2t

) ∫
|2η−1|−1<t

h1 dPX +
∫

t≤|2η−1|−1<∞

(‖f‖∞ + 1)2 dPX

≤ 2
(
‖f‖∞ + t

)
EP g + (‖f‖∞ + 1)2PX

(
|2η − 1|−1 ≥ t

)
≤ 2 t (‖f‖∞ + 1)EP g + (‖f‖∞ + 1)2‖(2η − 1)−1‖q,∞ t−q .

Let us define t by tq+1 := (‖f‖∞ + 1)(EP g)−1. Since EP g ≤ ‖f‖∞ + 1 we have t ≥ 1 and hence the
above estimate yields the assertion.

In the case of L1-SVMs with offset we also need the following lemma which bounds the size of
the offset b̃P,λ. This lemma has been proved in [15] for empirical distributions. Although its gener-
alization to general probability measures is straight forward we include the proof for completeness.

Lemma 6.7 Let P be a distribution on X×Y and λ > 0. Then for all possible pairs (f̃P,λ, b̃P,λ) ∈
H × R we have

|b̃P,λ| ≤ ‖f̃P,λ‖∞ + 1 .

Proof: If P (y = y∗|x) = 1 PX -a.s. for some y∗ ∈ Y there is nothing to be proved since b̃P,λ = y∗ by
our assumption on L1-SVMs mentioned in Section 2. Now let us assume that b̃P,λ > ‖f̃P,λ‖∞ + 1
and that P is not degenerate in the above way. Then there exists a constant δ > 0 such that
b̃P,λ > ‖f̃P,λ‖∞+1+ δ. This implies f̃P,λ(x)+ b̃P,λ > 1+ δ for all x ∈ X. We define b∗P,λ := b̃P,λ− δ.
Obviously, we then find l(1, f̃P,λ(x) + b̃P,λ) = 0 = l(1, f̃P,λ(x) + b∗P,λ) and

l(1, f̃P,λ(x) + b̃P,λ) = 1 + f̃P,λ(x) + b̃P,λ = 1 + f̃P,λ(x) + b∗P,λ + δ = l(−1, f̃P,λ(x) + b∗P,λ) + δ
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for all x ∈ X. Therefore we obtain Rl,P (f̃P,λ + b̃P,λ) > Rl,P (f̃P,λ + b∗P,λ) by using the assumption
on P .

The proof of the above lemma can be easily generalized to a larger class of loss functions. In
particular for the squared hinge loss function used in L2-SVMs Lemma 6.7 holds.

With the help of Lemma 6.6 we can now show a variance bound for the L1-SVM. For brevity’s
sake we only state and prove the result for L1-SVMs with offset. Therefore, the loss function L is
defined as in (42). Considering the proof it is immediately clear that the following variance bound
also holds for the L1-SVM without offset.

Proposition 6.8 Let P be a distribution on X × Y with Tsybakov noise exponent 0 < q ≤ ∞.
Define C := 16+8‖(2η−1)−1‖q,∞. Furthermore, let λ > 0 and 0 < γ ≤ λ−1/2 such that f̃P,λ ∈ γBH .
Then for all f ∈ γBH and all b ∈ R with |b| ≤ Kγ + 1 we have

E
(
L ◦ (f, b)− L ◦ (f̃P,λ, b̃P,λ)

)2 ≤ 8C(Kγ + 1)
q+2
q+1

(
E
(
L ◦ (f, b)− L ◦ (f̃P,λ, b̃P,λ)

)) q
q+1

+16C(Kγ + 1)
q+2
q+1 a

q
q+1 (λ) .

Proof: Let us define Ĉ := Kγ +1. By Lemma 6.7 we then see |b̃P,λ| ≤ Ĉ. We fix f + b and choose
a minimizer fl,P according to Lemma 6.6. Using (a+b)2 ≤ 2a2 +2b2 for all a, b ∈ R we first observe

E
(
L ◦ (f, b)− L ◦ (f̃P,λ, b̃P,λ)

)2
≤ 2E

(
λ‖f‖2 − λ‖f̃P,λ‖2)2 + 2E

(
l ◦ (f + b)− l ◦ (f̃P,λ + b̃P,λ)

)2
≤ 2λ2‖f‖4 + 2λ2‖f̃P,λ‖4 + 2E

(
l ◦ (f + b)− l ◦ (f̃P,λ + b̃P,λ)

)2
≤ 4E

(
l ◦ (f + b)− l ◦ fl,P

)2 + 4E
(
l ◦ fl,P − l ◦ (f̃P,λ + b̃P,λ)

)2 + 2λ2‖f‖4 + 2λ2‖f̃P,λ‖4 .

By Lemma 6.6 and ap + bp ≤ 2(a + b)p for all a, b ≥ 0, 0 < p ≤ 1 we find

E
(
l ◦ (f + b)− l ◦ fl,P

)2 + E
(
l ◦ fl,P − l ◦ (f̃P,λ + b̃P,λ)

)2
≤ CĈ

q+2
q+1

(
E
(
l ◦ (f + b)− l ◦ fl,P

)
+ E

(
l ◦ (f̃P,λ + b̃P,λ)− l ◦ fl,P

)) q
q+1

.

Since λ2‖f‖4 ≤ 1 and λ2‖f̃P,λ‖4 ≤ 1 we hence obtain

E
(
L◦(f, b)− L◦(f̃P,λ, b̃P,λ)

)2
≤ 4CĈ

q+2
q+1

(
E
(
l◦(f + b)− l◦fl,P

)
+ E

(
l◦(f̃P,λ + b̃P,λ)− l◦fl,P

)) q
q+1 + 2λ2‖f‖4 + 2λ2‖f̃P,λ‖4

≤ 8CĈ
q+2
q+1

(
E
(
l◦(f + b)− l◦fl,P

)
+ E

(
l◦(f̃P,λ + b̃P,λ)− l◦fl,P

)
+ λ2‖f‖4 + λ2‖f̃P,λ‖4

) q
q+1

≤ 8CĈ
q+2
q+1

(
E
(
l◦(f+b)− l◦(f̃P,λ+b̃P,λ)

)
+ 2E

(
l◦(f̃P,λ+b̃P,λ)− l◦fl,P

)
+ λ‖f‖2 + λ‖f̃P,λ‖2

) q
q+1

≤ 8CĈ
q+2
q+1

(
E
(
L◦(f + b)− L◦(f̃P,λ+b̃P,λ)

)
+ 2E

(
l◦(f̃P,λ+b̃P,λ)− l◦fl,P

)
+ 2λ‖f̃P,λ‖2

) q
q+1

≤ 8CĈ
q+2
q+1

(
E
(
L◦(f, b)− L◦(f̃P,λ, b̃P,λ)

)) q
q+1 + 16CĈ

q+2
q+1 a

q
q+1 (λ) .
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Remark 6.9 Proposition 6.8 establishes a variance bound of the form EP g2 ≤ c (EP g)α + δ with α = q
q+1 ,

c = (128 + 64‖(2η − 1)−1‖q,∞)B
q+2
q+1 , and δ = (256 + 128‖(2η − 1)−1‖q,∞)B

q+2
q+1 a

q
q+1 (λ). Recall, that by

substituting α by q
q+1 the term ε := ε(n, a, B, c, δ, x) in Theorem 5.8 can be estimated by

ε � B
2p(q+1)
2q+pq+4 c

(2−p)(q+1)
2q+pq+4

(a

n

) 2(q+1)
2q+pq+4

+ B
p
2 δ

2−p
4

(a

n

) 1
2

+ B
(a

n

) 2
2+p

+

√
δx

n
+
(cx

n

) q+1
q+2

+
Bx

n
(46)

for x ≥ 1. Of course, we can also replace c and δ by the above estimates. However, we will see in Section 7
that the above form is slightly easier to control.

7 Proof of Theorem 2.8

In this last section we prove our main result Theorem 2.8. Since the proof is rather complex we
split it into 3 parts: in Subsection 7.1 we estimate some covering numbers related to L1-SVMs
and Theorem 5.8. In Subsection 7.2 we then show that the trivial bound fT,λ ≤ λ−1/2 can be
significantly improved under the assumptions of Theorem 2.8. Finally, in Subsection 7.3 we prove
Theorem 2.8.

7.1 Covering numbers related to SVMs

In this subsection we establish a simple lemma that estimates the covering numbers of the class G
in Theorem 5.8 with the help of the covering numbers of BH . For brevity’s sake it only treats the
case of L1-SVMs with offset. The other case can be shown completely analogously.

Lemma 7.1 Let H be a RKHS over X, P be a probability measure on X × Y , λ > 0, and L be
defined by (42). Furthermore, let 1 ≤ γ ≤ λ−

1
2 , K be defined by (14), and

F := {(f, b) ∈ H × R : ‖f‖H ≤ γ and |b| ≤ γK + 1} .

Defining B := 2γK + 3 and

G :=
{
L ◦ (f, b)− L ◦ (fP,F , bP,F ) : (f, b) ∈ F

}
then gives ‖g‖∞ ≤ B for all g ∈ G, where (fP,F , bP,F ) denotes a L-risk minimizer in F . Assume
that there are constants a ≥ 1 and 0 < p < 2 such that for all ε > 0 we have

sup
T∈Zn

logN (BH , ε, L2(TX)) ≤ aε−p .

Then there exists a constant cp > 0 depending only on p such that for all ε > 0 we have

sup
T∈Zn

logN
(
B−1G, ε, L2(T )

)
≤ cp aε−p .

Proof: Let us write Ĝ :=
{
L◦(f, b) : (f, b) ∈ F

}
and H :=

{
l◦(f+b) : (f, b) ∈ F

}
. Furthermore,

for brevity’s sake we denote the set of all constant functions from X to [a, b] by [a, b]. We then have

N
(
B−1G, ε, L2(T )

)
= N

(
B−1Ĝ, ε, L2(T )

)
≤ N

(
[0, λγ2] + B−1H, ε, L2(T )

)
using the Lipschitz-continuity of the hinge loss function. By the sub-additivity of the log-covering
numbers we hence find

logN
(
B−1G, 3ε, L2(T )

)
≤ logN

(
[0, λγ2], ε, R

)
+ logN

(
B−1H, 2ε, L2(T )

)
≤ log

(1
ε

+ 1
)

+ logN
(
B−1(B ·BH + [−B,B]), 2ε, L2(TX)

)
≤ 2 log

(2
ε

+ 1
)

+ logN
(
BH , ε, L2(TX)

)
.
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From this we easily deduce the assertion.

7.2 Shrinking the size of the SVM minimizers

In this subsection we show that the trivial bound ‖fT,λ‖ ≤ λ−1/2 can be significantly improved under
the assumptions of Theorem 2.8. In view of Theorem 5.8 this improvement will have a substantial
impact on rates of Theorem 2.8. In order to obtain a rather flexible result let us suppose that for
all 0 < p < 2 we can determine constants c, γ > 0 such that

sup
T∈Zn

logN (BHσ , ε, L2(TX)) ≤ cσγdε−p (47)

holds for all ε > 0, σ ≥ 1. Recall, that by Theorem 2.1 we can actually choose γ := (1− p
2)(1 + δ)

for all δ > 0.

Lemma 7.2 Let X be the closed unit ball of the Euclidean space Rd, and P be a distribution on
X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞ and geometric noise exponent 0 < α < ∞.
Furthermore, let us assume that (47) is satisfied for some 0 < γ ≤ 2 and 0 < p < 2. Given an
0 ≤ ς < 1

5 we define

λn := n
− 4(α+1)(q+1)

(2α+1)(2q+pq+4)+4γ(q+1)
· 1
1−ς

and
σn := λ

− 1
(α+1)d

n

Assume that for the L1-SVM without offset using the Gaussian RBF kernel with width σn there are
constants 1

2(α+1) + 4ς < ρ ≤ 1
2 and C ≥ 1 such that

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cxλ−ρ

n

)
≥ 1− e−x

for all n ≥ 1 and all x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for ρ̂ := 1
2

(
1

2(α+1) +
4ς + ρ

)
and for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Ĉxλ−ρ̂

n

)
≥ 1− e−x .

If q > 0 then the same result is true for L1-SVMs with offset.

Proof: We only prove the lemma for L1-SVMs without offset since the proof for L1-SVMs with
offset is analogous. Now let f̂T,λn be a minimizer of RL,T on Cxλ

(ρ−1)/2
n BHσn

, where L is defined
by (41). By our assumption we have f̂T,λn = fT,λn with probability not less than 1−e−x since fT,λn

is unique for every training set T by the strict convexity of L. We show that for some constant
C̃ > 0 and all n ≥ 1, x ≥ 1 the improved bound

‖f̂T,λn‖ ≤ C̃xλ
ρ̂−1
2

n (48)

holds with probability not less than 1 − e−x. Consequently, ‖fT,λn‖ ≤ C̃xλ
(ρ̂−1)/2
n holds with

probability not less than 1− 2e−x. Obviously, the latter implies the assertion. In order to establish
(48) we will apply Theorem 5.8 to the modified L1-SVM classifier which produces f̂T,λn . To this end
we first remark that the infinite sample version f̂P,λn which minimizes RL,P on Cxλ

(ρ−1)/2
n BHσn

exists by a small modification of [33, Lem. 3.1].
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Let us first treat the case q > 0. By Proposition 6.8 and assumption (47) we observe that we may
choose B, a and c such that

B ∼ xλ−ρ
n

a ∼ λ
− γ

α+1
n

c ∼ x
q+2
q+1 λ

−ρ· q+2
q+1

n .

Furthermore, Theorem 2.7 shows aσn(λn) � λ
α

α+1
n and thus by Proposition 6.8 we may choose

δ ∼ x
q+2
q+1 λ

αq−ρ(q+2)(α+1)
(α+1)(q+1)

n .

Now Remark 6.9 and a rather time-consuming but simple calculation shows that

ε(n, a, B, c, δ, x) � x2λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−ς· (2α+1)(2q+pq+4)+4γ(q+1)

2(α+1)(2q+pq+4)
n .

By Theorem 5.8 there is therefore a constant C̃1 > 0 independent of n and x such that for all n ≥ 1
and all x ≥ 1 the estimate

λn‖f̂T,λn‖2 ≤ λn‖f̂T,λn‖2 +Rl,P (f̂T,λn)−Rl,P

≤ λn‖f̂P,λn‖2 +Rl,P (f̂P,λn)−Rl,P + C̃1x
2λ

α
α+1

− 2ρ(α+1)−1
2(α+1)

−ς· (2α+1)(2q+pq+4)+4γ(q+1)
2(α+1)(2q+pq+4)

n

holds with probability not less than 1 − e−x. Now, λ‖fP,λ‖2 ≤ aσn(λn) � λ
α

α+1
n yields ‖fP,λn‖ �

λ
− 1

2(α+1)
n and hence ρ > 1

2(α+1) implies ‖fP,λn‖ ≤ λ−ρ
n ≤ Cxλ−ρ

n for large n. In other words, for

large n we have fP,λn = f̂P,λn . Consequently, with probability not less than 1− e−x we have

λn‖f̂T,λn‖2 ≤ λn‖fP,λn‖2 +Rl,P (fP,λn)−Rl,P + C̃1x
2λ

α
α+1

− 2ρ(α+1)−1
2(α+1)

−ς· (2α+1)(2q+pq+4)+4γ(q+1)
2(α+1)(2q+pq+4)

n

≤ C̃2λ
α

α+1
n + C̃1x

2λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−4ς

n ,

which shows the assertion in the case q > 0.

Let us now prove the assertion for q = 0. By Proposition 6.1 and assumption (47) we observe that
we may choose B, a and c such that

B ∼ xλ−ρ
n

a ∼ λ
− γ

α+1
n

c ∼ λ−1
n ,

and thus Remark 6.2 and a simple calculation gives us

ε(n, a, B, c, δ, x) � x2λ
2α−2αpρ−2pρ+αp+p

(2+p)(α+1)
−4ς

n .

By Theorem 5.8 there is therefore a constant C̃1 > 0 independent of n and x such that for all n ≥ 1
and all x ≥ 1 the estimate

λn‖f̂T,λn‖2 ≤ λn‖f̂T,λn‖2 +Rl,P (f̂T,λn)−Rl,P

≤ λn‖f̂P,λn‖2 +Rl,P (f̂P,λn)−Rl,P + C̃1x
2λ

2α−2αpρ−2pρ+αp+p
(2+p)(α+1)

−4ς
n
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holds with probability not less than 1− e−x. As in the case q > 0 we find fP,λn = f̂P,λn for all large
n. With probability not less than 1− e−x this gives

λn‖f̂T,λn‖2 ≤ λn‖fP,λn‖2 +Rl,P (fP,λn)−Rl,P + C̃1x
2λ

2α−2αpρ−2pρ+αp+p
(2+p)(α+1)

−4ς
n

≤ C̃2λ
α

α+1
n + C̃1x

2λ
2α−2αρ−2ρ+1

2(α+1)
−4ς

n

= C̃2λ
α

α+1
n + C̃1x

2λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−4ς

n ,

where we used ρ > 1
2(α+1) and p < 2. From this we obtain the assertion for q = 0.

7.3 Proof of Theorem 2.8

The next theorem establishes almost the result of Theorem 2.8. We present this intermediate result
because it clarifies the impact of covering number bounds of the form (47) on our rates.

Theorem 7.3 Let X be the closed unit ball of the Euclidean space Rd, and P be a distribution
on X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞ and geometric noise exponent 0 < α < ∞.
Finally, let us assume that we can bound the covering numbers by (47) for some 0 < γ ≤ 2 and
0 < p < 2. Given an 0 ≤ ς < 1

5 we define

λn := n
− 4(α+1)(q+1)

(2α+1)(2q+pq+4)+4γ(q+1)
· 1
1−ς

and
σn := λ

− 1
(α+1)d

n

Then for all ε > 0 there is a constant C > 0 such that for all x ≥ 1 and all n ≥ 1 the L1-
SVM without offset and with regularization parameter λn and Gaussian RBF kernel with width σn

satisfies

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cx2n

− 4α(q+1)
(2α+1)(2q+pq+4)+4γ(q+1)

· 1
1−ς

+20ς+ε
)
≥ 1− e−x .

If q > 0 then the same result is true for L1-SVMs with offset.

Proof: Iteratively using Lemma 7.2 we find a constant C ≥ 1 such that for ρ := 1
2(α+1) + 4ς + ε

and all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : ‖fT,λn‖ ≤ Cxλ−ρ

n

)
≥ 1− e−x .

Repeating the calculations of Lemma 7.2 (distinguish between the cases q > 0 and q = 0) we hence
find a constant C̃ > 0 such that for all n ≥ 1 and all x ≥ 1 we have

λn‖fT,λn‖2 +Rl,P (fT,λn)−Rl,P ≤ λn‖fP,λn‖2 +Rl,P (fP,λn)−Rl,P + C̃1x
2λ

α
α+1

− 2ρ(α+1)−1
2(α+1)

−4ς
n

with probability not less than 1− e−x. By the definition of ρ we obtain

λ
α

α+1
− 2ρ(α+1)−1

2(α+1)
−4ς

n ≤ λ
α

α+1
−4ς−ε−4ς

n ≤ n
− 4α(q+1)

(2α+1)(2q+pq+4)+4γ(q+1)
· 1
1−ς

+20ς+3ε
.

From this we easily deduce the assertion.

33



In order to prove Theorem 2.8 recall that by Theorem 2.1 we can choose γ := (1− p
2)(1 + δ) for

all δ > 0. The idea of the proof of Theorem 2.8 is to let δ → 0 while simultaneously adjusting ς.
The resulting rate is then optimized with respect to p. Unfortunately, a rigorous proof requires to
choose p a-priori. Therefore, the optimization step is somewhat hidden in the following proof:

Proof of Theorem 2.8: Let us first consider the case α ≤ q+2
2q . Our aim is to apply Theorem

7.3. To this end we write pδ := 2− δ and γδ := (1− pδ
2 )(1 + δ) = δ

2(1 + δ) for δ > 0. Furthermore,
we define ςδ by

4(α + 1)(q + 1)
(2α + 1)(4q − δq + 4) + 4γδ(q + 1)

· 1
1− ςδ

=
α + 1
2α + 1

.

Since 2αq − q − 2 ≤ 0 < 2δ(q + 1) we have q(2α + 1) < 2(1 + δ)(q + 1) and hence

4(2α + 1)(q + 1) < 4(2α + 1)(q + 1)− δq(2α + 1) + 2δ(1 + δ)(q + 1) .

This shows ςδ > 0 for all δ > 0. Furthermore, these definitions also imply ςδ → 0 and γδ → 0
whenever δ → 0. Now, Theorem 7.3 tells us that for all ε > 0 and all small enough δ > 0 there
exists a constant Cδ,ε ≥ 1 such that for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y )n : RP (fT,λn) ≤ RP + Cδ,εx

2n
− 4α(q+1)

(2α+1)(4q−δq+4)+4γδ(q+1)
· 1
1−ςδ

+20ςδ+ε
)
≥ 1− e−x .

In particular, if we choose δ sufficiently small we find the assertion.

Let us now consider the case q+2
2q < α < ∞. In this case we write pδ := δ and γδ := (1− pδ

2 )(1+δ) =

1 + δ
2 −

δ2

2 for δ > 0. Furthermore, we define ςδ by

4(α + 1)(q + 1)
(2α + 1)(2q + δq + 4) + 4γδ(q + 1)

· 1
1− ςδ

=
2(α + 1)(q + 1)

2α(q + 2) + 3q + 4
.

Since for 0 < δ ≤ 1 we have 0 < δq(2α + 1) + 2δ(q + 1) − 2δ2(q + 1) we easily check ςδ > 0.
Furthermore, the definitions ensure ςδ → 0 and γδ → 1 whenever δ → 0. The rest of the proof
follows that of the first case.
Finally, let us treat the case α = ∞. We define αλ by log λ = αλd log 2

√
d

σ . Since σ > 2
√

d we have
αλ > 0 for all 0 < λ < 1. Furthermore, applying Theorem 2.7 for αλ we find a(λ) ≤ 2Cdλ for all
0 < λ < 1 and a constant Cd > 0 depending only on the dimension d. Adapted versions of Lemma
7.2 and Theorem 7.3 then yield the assertion.
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